
Dynamic C 5.x
Integrated C Development System

Application Frameworks
Revision 2

Z-World � Dynamic C 5.x

Application Frameworks � Part Number 019-0001-02
Revision 2 � 021-0006-02 � Printed in U.S.A.
Last revised by TI � August 21, 1998

Copyright

© 1998 Z-World, Inc. All rights reserved.

Z-World, Inc. reserves the right to make changes and improvements to its
products without providing notice.

Trademarks
� Dynamic C® is a registered trademark of Z-World, Inc.
� PLCBus� is a trademark of Z-World, Inc.
� Windows® is a registered trademark of Microsoft Corporation.

Notice to Users
When a system failure may cause serious consequences, protecting life and
property against such consequences with a backup system or safety device
is essential. The buyer agrees that protection against consequences
resulting from system failure is the buyer�s responsibility.

This device is not approved for life-support or medical systems.

Company Address

Z-World
2900 Spafford Street
Davis, California 95616-6800 USA

Telephone:
Facsimile:

24-Hour FaxBack:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
(530) 753-0618
http://www.z w orld.com
zworld@zworld.com

Application Frameworks Table of Contents s iii

TABLE OF CONTENTS

About This Manual vii

Introduction 1-1

Real-Time Programming 2-1
Interrupt Latency .. 2-2

Causes ... 2-2
Nested Interrupts ... 2-3

Multitasking ... 2-4
Cooperative Multitasking .. 2-4
Preemptive Multitasking ... 2-4

Tips for Multitask Programming .. 2-6
Assign Priority Levels ... 2-6
Identify Shared Variables .. 2-6

Costatements 3-1
Solving Problems with Costatements ... 3-2

Solving Problems Without Costatements 3-3
Solving the Problem With Costatements 3-4
Summary ... 3-4

Costatement Functions ... 3-5
Syntax .. 3-5
State ... 3-6
The CoData Structure .. 3-6
The Implementation of Costatements ... 3-8
The firsttime Flag and firsttime Functions 3-8
Associated Keywords and Functions .. 3-9

Delay Functions .. 3-10
Other Functions .. 3-10

Costatement Topics .. 3-11
Timing Issues .. 3-11
Dependency Relations Among Costatements 3-13
Nesting Costatements .. 3-14
Error Exits from Costatements .. 3-15
Detecting Errors In waitfor Statements 3-16
waitfor and Problems with Evaluating C Expressions 3-17

iv s Table of Contents Dynamic C 5.x

The Virtual Driver 4-1
Periodic Timer Interrrupts .. 4-2

Calling Sequence ... 4-3
The RTK Driver .. 4-3
The Fastcall Driver ... 4-3
Virtual Watchdog Timers .. 4-4

Global Initialization ... 4-4

Real-Time Kernels 5-1
The Simplified Real-Time Kernel .. 5-2
The Real-Time Kernel ... 5-3
Kernel Functions .. 5-6

Restrictions on the Use of Suspend ... 5-7
RTK Internals .. 5-8

Failure and Recovery 6-1
Software Failures ... 6-2
Hardware Failures .. 6-2
Hardware Watchdog Timer .. 6-3
Reset and Super-Reset ... 6-3
Recovery of Protected Variables .. 6-4

The Five-Key System 7-1
Operator Features ... 7-2
Programmer Features ... 7-3

Special Key Combinations .. 7-5
Five-Key Functions .. 7-5
Reading the Keypad without FK.LIB .. 7-7

RS-232 Communication 8-1
Serial Communication .. 8-2

Send and Receive Buffers ... 8-2
Echo Option .. 8-2
CTS/RTS Control .. 8-3
XMODEM File Transfer ... 8-3
Modem Communication .. 8-3

Application Frameworks Table of Contents s v

Function Libraries and Sample Programs .. 8-4
Software Support ... 8-4

RS-232 Software ... 8-5
XMODEM Commands ... 8-8
Miscellaneous Functions .. 8-9
RS-485 Drivers ... 8-11

Libraries .. 8-11
Sample Programs .. 8-11

Master-Slave Networking 9-1
Communication Protocol ... 9-2
Hardware Connection .. 9-2
Software Support ... 9-3

Miscellaneous Functions ... 9-4
Libraries and Sample Programs ... 9-7

Libraries .. 9-7
Sample Programs .. 9-7

Appendix A: Execution Speed A-1

Appendix B: Old 5-Key System B-1
Code-Driven Approach .. B-2
Linked-List Approach .. B-3
Updating and Monitoring Parameters .. B-4
Monitoring Function Keys ... B-5
Monitoring Help Keys ... B-5
Periodic Display ... B-5
Software Alarms ... B-6
5-Key Support Functions ... B-6

Appendix C: Z-World Products C-1

Index

vi s Table of Contents Dynamic C 5.x

Application Frameworks About This Manual s vii

ABOUT THIS MANUAL

Z-World customers develop software for their programmable controllers
using Z-World�s Dynamic C development system running on an IBM-
compatible PC. The controller is connected to a COM port on the PC,
usually COM2, which by default operates at 19,200 baud.

The Standard version of Dynamic C is suitable for programs up to
80 kbytes, with limited access to extended memory. The Deluxe version
supports programs with up to 512 kbytes in ROM (code and constants) and
512 kbytes in RAM (variable data), with full access to extended memory.

The Three Manuals
Dynamic C is documented with three reference manuals:

� Dynamic C Application Frameworks
� Dynamic C Technical Reference
� Dynamic C Function Reference.

This manual discusses various topics in depth. These include the use of
the Z-World real-time kernel, costatements, function chaining, and serial
communication.

The Technical Reference manual describes how to use the Dynamic C
development system to write software for a Z-World programmable
controller.

The Function Reference manual contains descriptions of all the function
libraries on the Dynamic C disk and all the functions in those libraries.

$ Please read release notes and updates for late-breaking
information about Z-World products and Dynamic C.

Dynamic C 5.xviii s About This Manual

Assumptions
Assumptions are made regarding the user's knowledge and experience in
the following areas:

• Understanding of the basics of operating a software program and
editing files under Windows on a PC.

• Knowledge of the basics of C programming. Dynamic C is not the
same as standard C.

$ For a full treatment of C, refer to the following texts:

The C Programming Language by Kernighan and
Ritchie (published by Prentice-Hall).

and/or

C: A Reference Manual by Harbison and Steel
(published by Prentice-Hall).

• Knowledge of basic Z80 assembly language and architecture.

$ For documentation from Zilog, refer to any of the
following texts:

Z180 MPU User's Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User's Manual

Acronyms
Table 1 lists the acronyms that may be used in this manual.

Table 1. Acronyms

Acronym Meaning

EPROM Erasable Programmable Read-Only Memory

EEPROM Electronically Erasable Programmable Read-Only Memory

NMI Nonmaskable Interrupt

PIO Parallel Input/Output Circuit
(Individually Programmable Input/Output)

PRT Programmable Reload Timer

RAM Random Access Memory

RTC Real-Time Clock

SIB Serial Interface Board

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter

Application Frameworks About This Manual s ix

Conventions
Table 2 lists and defines typographic conventions that may be used in this
manual.

Programming Abbreviations

This manual uses these programming abbreviations for convenience.

� uint means unsigned integer

� ulong means unsigned long

These abbreviations are not standard C keywords, and will not work in an
application unless they are first declared with typedef or #define as in
the examples shown below.

typedef unsigned int uint

or

#define ulong unsigned long

Table 2. Typographic Conventions

Example Description

 While Courier font (bold) indicates a program, a fragment of a program,
or a Dynamic C keyword or phrase.

 // IN-01… Program comments are written in Courier font, plain face.

 Italics Indicates that something should be typed instead of the italicized
words (e.g., in place of filename, type a file’s name).

 Edit Sans serif font (bold) signifies a menu or menu selection.

 ... An ellipsis indicates that (1) irrelevant program text is omitted for
brevity or that (2) preceding program text may be repeated
indefinitely.

 [] Brackets in a C function’s definition or program segment indicate
that the enclosed directive is optional.

 < > Angle brackets occasionally enclose classes of terms.

 a | b | c A vertical bar indicates that a choice should be made from among
the items listed.

Dynamic C 5.xx s About This Manual

For ordering information, call your Z-World
Sales Representative at (530) 757-3737.(

Icons
Table 3 displays and defines icons that may be used in this manual.

Table 3. Icons

 Icon Meaning

 $ Refer to or see

 (Please contact

 Caution

 ! Note

 High Voltage

 7,3

Tip

 Factory Default

FD

Application Frameworks Introduction s 1-1

INTRODUCTION

Dynamic C 5.x1-2 s Introduction

Dynamic C combines a C compiler, an editor, and a source-level debugger.
The Dynamic C development system runs on IBM or compatible PCs. The
target controller connects to a serial port on the PC, and typically commu-
nicates at 19,200 to 57,600 baud.

Dynamic C allows the user to develop software on the target controller
interactively. Dynamic C includes many useful features, such as the
following.

� Direct compilation to the target controller�s memory. Compila-
tion, linking and downloading occur simultaneously.

� Compilation to File. EPROM files, or downloadable files that
work with the Z-World Download Manager, are easy to create
with Dynamic C.

� Embedded assembly language. It is possible to write entire
functions in assembly language, or include portions of assembly
language in a C program. Assembly language is sometimes
important for performance in time-critical programs.

� Z-World has made innovative extensions to the C language. The
costatement makes cooperative multitasking very convenient.
The shared keyword makes access to a variable atomic, so that
the integrity of the variable can be maintained among different
tasks. The protected keyword causes the compiler to keep a
backup copy of the variable during modification so that it can be
reconstructed after a catastrophe such as a power failure. Inter-
rupt service routines can be written in C. These, and other,
extensions to C simplify the task of building robust systems.

� Z-World software libraries support real-time programming,
networking, and serial communication.

Application Frameworks Real-Time Programming s 2-1

REAL-TIME PROGRAMMING

Programmers should be aware of certain issues regarding real-time
programming. Real-time systems thrive on interrupts and interrupt
processing.

Chapter 2 discusses the following topics.

� Interrupt Latency

� Multitasking

Dynamic C 5.x2-2 s Real-Time Programming

Interrupts can occur at any time, in particular, in the middle of a write to
multibyte variables (anything except char). The variable value can be
indeterminate. Declare variables accessible in interrupt service routines as
shared to prevent errors.

There is no operating system to handle interrupts in a real-time program
that runs standalone on a controller. Furthermore, real-time applications
require far more than a generic response to interrupts.

Dynamic C makes writing interrupt routines just as easy as writing any C
functions, but this does not mean that real-time software is easy to develop.
A major issue for the real-time programmer is interrupt latency.

Interrupt Latency
Interrupt latency is usually defined as the worst-case delay between an
interrupt request and the start of the interrupt service. Typical values for
this delay are about 100 microseconds.

Low interrupt latency is necessary when speed is important, or when it is
important that an interrupt not be missed, such as a periodic timer inter-
rupt.

Causes

A delay between an interrupt request and the start of the interrupt service
can occur for several reasons.

1. The current instruction must finish executing. This is never more than
14 clock periods on the Z180.

2. The return address must be pushed on the stack. This is about 10 more
clock periods.

3. Atomic store and read operations associated with shared and
protected variables result in interrupts being disabled for about
10 microseconds on a 9-MHz processor. (Atomic structure assign-
ments, of course, can cause longer delays.)

The above-mentioned delays are relatively minor since they are simply the
overhead from processing interrupts. More serious delays occur when
interrupts are disabled when an interrupt is requested. Interrupts can be
disabled, for example, during critical sections of code. Interrupt process-
ing itself disables interrupts until the interrupt service routine reenables
them or exits.

If software turns off interrupts for 25 microseconds and an interrupt
request happens just as the interrupts are disabled, the interrupt service will
be delayed for an additional 25 microseconds.

Application Frameworks Real-Time Programming s 2-3

A running program will fail if the interrupt latency is too great. For
example, if the serial port is receiving characters every 173 microseconds
(57,600 baud), then an interrupt latency of 2 × 173 µs = 347 microseconds
will cause a lost character because the serial port can only hold two
characters before it loses one.

Interrupt routines are usually most efficient when written in assembly
language, but interrupt routines can be written in Dynamic C at the
expense of a minimum overhead of about 25 microseconds on a 9-MHz
processor, which is the time necessary to save the registers. If the service
routine leaves interrupts off for its duration, then it is necessary to add
another 30 microseconds to the latency calculation, to allow for the return
from interrupt, plus the amount of time it takes to execute the routine. The
advantage of assembly-language routines is that they need only to save the
registers that they use, while the C interrupt routine assumes that every-
thing possible must be saved. Assembly language also has more direct
access to the machine registers.

Nested Interrupts

With sufficient care, it is possible to reenable interrupts inside an interrupt
routine. This lessens the interrupt latency because interrupts do not stay
disabled for the duration of the interrupt handler.

In general, the cause of a type X interrupt should be removed before
interrupts are reenabled for the type X interrupt. When this is done, one
interrupt routine can interrupt another interrupt routine. For example, a
serial port interrupt routine on the Z180 can reenable interrupts in general
while disabling the serial port interrupt specifically. The serial port
interrupt can then be reenabled upon returning from the interrupt routine.
However, such a practice can create difficulties, particularly if a nested
interrupt lasts for a long time. There is no way to get back to the original
interrupt service until the nested interrupt is complete, at which point some
data may be lost.

A logical solution in this situation is to establish a software flag that
prevents a lengthy task from interrupting a service routine. Were this idea
taken to extremes, there would eventually be an operating system where
every interrupt is logged by the operating system and then dispatched in a
priority order. Z-World provides two real-time kernels to help the user
solve these problems.

Dynamic C 5.x2-4 s Real-Time Programming

Multitasking
A task is an ordered list of operations to perform. In a multitasking
environment, more than one task (each representing a sequence of opera-
tions) can appear to execute in parallel. In reality, a single processor can
only execute one instruction at a time, so the parallel tasks execute almost
in parallel.

If an application actually has multiple tasks to perform, multitasking
software can usually take advantage of natural delays in each task to
increase the overall performance of the system. Each task can do some of
its work while the other tasks are waiting for an event, or for something to
do.

Although multitasking may actually decrease processor throughput slightly,
it is an important concept. A controller is often connected to more than
one external device. A multitasking approach makes it possible to write a
program controlling multiple devices without having to think about all the
devices at the same time. In other words, multitasking is an easier way to
think about the system.

There are two types of multitasking available for developing applications
in Dynamic C: preemptive and cooperative.

Cooperative Multitasking

In a cooperative multitasking environment, each task voluntarily gives up
control so other tasks can execute. A kernel is not required in this case
because the tasks cooperate among themselves. If periodic task scheduling
or time delays are not required, a cooperative multitasking environment
does not require a timer interrupt.

The following advantages are offered by cooperative multitasking.

� Much easier communication between tasks.

� Greater predictability of mutual task interaction.

� Much simplified programming.

Dynamic C has a language extension called the costatement to support
cooperative multitasking. In essence, a costatement is a cooperative task.

Refer to Chapter 3, Costatements, and to the Dynamic C
Technical Reference manual for more information.$

Preemptive Multitasking

Preemption means tasks are interrupted and control is taken away involun-
tarily (by an interrupt). We say a task is preempted by another task,
perhaps of a higher priority. A task has no control of when preemption

Application Frameworks Real-Time Programming s 2-5

may take place, when preemption is enabled, but a task can turn off
preemption altogether (by disabling interrupts).

A preemptive multitasking environment needs a kernel to stop and start
tasks. This software that monitors, regulates, and dispatches tasks, usually
uses a timer interrupt to indicate when it is time to preempt the currently
active task.

Because a task does not know when preemption may take place, program-
mers must be careful when variables are shared among preemptive tasks.
Cooperation, and thus, communication, among preemptive tasks is the
major problem.

The real-time kernel (RTK) supplied with Dynamic C supports prioritized
preemption: only tasks of a higher priority can interrupt tasks of lower
priority. As many priority levels as needed can be created when using the
RTK. The RTK also has a suspend function for a high-priority task to
suspend itself (for a specified length of time or until awakened by other
tasks) so that lower priority tasks can execute. The suspend function
helps a task to be cooperative.

Z-World also ships a simplified real-time kernel (SRTK). Like the full
RTK, the simplified RTK is prioritized and preemptive. However, there
are only three levels of priority in the SRTK. The top-priority task
executes at 25-millisecond intervals, the low-priority task executes at
100-millisecond intervals, and background processing (even lower
priority) can execute when no other tasks are executing.

There is also a �fast call� task available with either kernel, or when no
kernel is running, to execute as often as 1280 times per second. The �fast
call� task preempts all other tasks.

The fixed properties of the SRTK make it compact and easy to use. The
SRTK can combine with cooperative multitasking (costatements) to
provide a robust multitasking environment.

A timer interrupt handler may have to be written if a higher frequency is
desired. Assuming the interrupt handler has about 100 instructions, the
maximum frequency of timer interrupts could be about 6�10 kHz on a
9-MHz board.

Note that the SRTK depends on a fixed frequency of
Timer 1 (a Z180 on-chip timer). Consequently, changing
the frequency of Timer 1 would change the timing charac-
teristics of the SRTK.

!

Refer to Chapter 5, Real-Time Kernels, for further details.$

Dynamic C 5.x2-6 s Real-Time Programming

Tips for Multitask Programming

Assign Priority Levels

Determine which operations must be performed within a fixed amount of
time. For example, if a controller grips a falling object after the object
passes a sensor, the grip action must be initiated and performed in time so
that the object is caught. If the same system has a liquid-crystal display
(LCD) to display the time, the gripper routine should get higher priority
than the LCD routine.

Generally, the tighter the deadline, the higher the priority. Lower priority
tasks are the ones that can be interrupted (preempted). Their completion
can be delayed by a preempting task.

Tight deadlines do not imply high frequency. The falling object may arrive
once in an hour, or at random. The LCD should be updated every second,
but the gripper routine still must have a higher priority.

Identify Shared Variables

In a real-time system with concurrent tasks that share data, subtle problems
can occur with variables that are stored and fetched in a nonatomic
manner. When several instructions are necessary to fetch or store the
variable, an interrupt can occur between the instructions. For example, a
floating-point variable occupies four bytes. When a value is stored in this
variable, it typically takes two or more instructions to perform the store to
memory. If an interrupt occurs between these store instructions, and a new
task of higher priority that uses the same variable takes over, then the new
task will see a corrupted value, partly old and partly new. Such nonatomic
writes can be made atomic by disabling the interrupts to prevent this
situation.

DI();
fnum = xnum + 5.34;
EI() ;

DI disables the interrupts, assuring that no other task will begin executing
until the computation is complete. EI then enables the interrupts.

The keyword shared declares a variable to be atomic. Dynamic C
automatically handles interrupts on stores and fetches of shared variables.

shared float f1, f2; // atomic variables

Interrupts, if enabled, will be disabled before a multi-instruction load or
store. Following the load or store, interrupts are then restored to their
previous state. Byte fetches and stores are naturally atomic, and nothing
needs to be done. Loads and stores of 16-bit data may or may not need
their interrupts disabled, depending on the type of processor instruction
used.

Application Frameworks Real-Time Programming s 2-7

If a structure is declared shared, then any fetch of an element will be
atomic. An assignment that causes the entire shared structure to be moved
in memory is also atomic.

Dynamic C 5.x2-8 s Real-Time Programming

Application Frameworks Costatements s 3-1

COSTATEMENTS

Costatements allow cooperative multitasking within an application.
Costatements are blocks of code that can suspend their own execution at
various times for various reasons, allowing other costatements or other
program code to execute. Costatements operate concurrently.

There are several advantages such as the following to using costatements.:

� Costatements are a feature built into the language.

� Costatements are cooperative instead of preemptive.

� Costatements can operate without multiple stacks.

Using costatements effectively requires knowledge of their syntax, their
supporting data structures, and the mechanisms by which they may be put
to use.

Chapter 3 discusses the following topics.

� Solving problems with costatements

� Costatement functions

� Costatement topics: timing, dependency, nesting, and errors

Dynamic C 5.x3-2 s Costatements

Solving Problems with Costatements
Costatements are Z-World�s extension to C to facilitate cooperative
multitasking. The following example shows how to use costatements to
simplify the solution to a real-time problem.

Example

The following sequence of events is common in real-time programming.

Start:
1. Wait for a pushbutton to be pressed.
2. Turn on the first device.
3. Wait 60 seconds.
4. Turn on the second device.
5. Wait 60 seconds.
6. Turn off both devices.

Go back to the start.

The most rudimentary way to perform this function is to idle (�busy wait�)
in a tight loop at each of the steps where waiting is specified. But most of
the computer time will used waiting for the task, leaving no execution time
for other tasks. Figure 3-1 shows the execution of this task schematically.

Task 1

Task 2

Task n

Figure 3-1. Execution of Sequence of Tasks in a Program

If there are other tasks to be run, this control problem can be solved better
by creating a larger loop that processes a number of tasks. Now, each task
can relinquish control when it is waiting, thereby allowing other tasks to
proceed. Each task then does its work in the idle time of the other tasks.

Application Frameworks Costatements s 3-3

This situation is not unlike that of a worker who goes from station to
station performing jobs according to an instruction book at each station.
By traveling from station to station, the worker can execute long sequences
of events without having to waste time at any station waiting for the next
event. This is similar to a cook who has 5 to 10 ovens and many cook pots
to prepare many different meals at the same time.

Solving Problems Without Costatements

One way to implement multitasking is with state machines. A state
machine is a programming construct that goes through a sequence of states,
the states being indexed by the value of one or more variables. Here is
what a state machine solution might look.

state = 1; // initialization:
for(;;){

(other tasks or state machines)

// The variable time is incremented by system every sec.
if(state==1){

if(buttonpushed()){
state=2; turnondevice1();
timer1 = time;

}else if(state==2){
if((time-timer1) >= 60L){

state=3; turnondevice2();
timer2=time;

}
}else if(state==3){

if((time-timer2) >= 60L){
state=1; turnoffdevice1();
turnoffdevice2();

}
}

(other tasks or state machines)

}

Dynamic C 5.x3-4 s Costatements

Solving the Problem With Costatements

The Dynamic C costatement provides an easier way to implement the task.

for(;;){
costate{ ... } // task 1
costate{ // task 2

waitfor(buttonpushed());
turnondevice1();
waitfor(DelaySec(60L));
turnondevice2();
waitfor(DelaySec(60L));
turnoffdevice1();
turnoffdevice2();

}
...

costate{ ... } // task n
}

The solution is elegant and simple. Note that the costatement (the one that
is written out) looks much like the original description of the problem. All
the branching, nesting and variables within the task are hidden in the
implementation of the costatement and its waitfor statements.

Summary

The Dynamic C costatement provides a formalized way of generating code
that advances until it encounters a point in the logic where it is necessary
to create a delay or wait for an event. Waiting is accomplished by jumping
out of the costatement to allow the larger loop to continue execution.
Whenever a costatement is defined, the compiler creates an associated
CoData data structure at the same time. The address of the current starting
point in the costatement and the time at which the currently running delay
(if any) began are saved in the data structure.

A costatement can be thought of as a local computer with its own instruc-
tion counter. One or more statements are executed in the costatement on
each pass of the execution thread.

Costatements are cooperative concurrent tasks because they can suspend
their own operation. There are several ways they do this.

� They can waitfor events, conditions, or the passage of time.

� They can yield temporarily to other costatements.

� They can abort their own operation.

Application Frameworks Costatements s 3-5

Costatements can also resume their own execution from the point at which
they suspended their operation. In general, each costatement in a set of
costatements is in a state of partial completion. Some are suspended, some
are executing. With the passage of time, other costatements suspend and
others resume.

All costatements in the program, except those that use pointers as their
names are initialized whenever the function chain _GLOBAL_INIT.is
called.

See Chapter 4, Virtual Driver, and the CPLC.LIB library in the
Dynamic C Function Reference manual for more information.$

The functions VdInit and uplc_init also call
_GLOBAL_INIT.!

Costatement Functions

Syntax

The general format of a costatement appears below.

costate [name [state]] {
[statement | yield; | abort; | waitfor(ex-
pression);] . . .

}

A costatement can have as many statements, including abort statements,
yield statements, and waitfors as needed.

Costatements may be named or unnamed. The name of a named costate-
ment can be one of the following.

� A valid C name not previously used. This results in the creation
of a structure of type CoData of the same name.

� The name of a local or global CoData structure that has already
been defined.

� A pointer to an existing structure of type CoData.

If name is missing, then the compiler creates an �unnamed� structure of
type CoData for the costatement.

Dynamic C 5.x3-6 s Costatements

State

The term state can be one of the following.

� always_on. The costatement is always active. (Unnamed
costatements are always on.)

� init_on. The costatement is initially on and will automatically
execute the first time it is encountered in the execution thread.
The costatement becomes inactive after it completes (or aborts).

If state is absent, the costatement is initially off. The software must
trigger the costatement for the costatement to execute. Then it will execute
once and become inactive again. Unnamed costatements are always_on.

The CoData Structure

Each costatement is associated with a structure of type CoData. For this
discussion, assume that each costatement corresponds to a static CoData
structure.

This is the CoData structure.

typedef struct {
char CSState;
uint lastlocADDR;
char lastlocCBR;
char ChkSum;
char firsttime;
union{

ulong ul;
struct {

uint u1;
uint u2;

} us;
} content;
char ChkSum2;

} CoData;

CSState

The CSState field contains two flags, STOPPED and INIT. The functions
CoBegin, CoReset, CoPause and CoResume set these two flags. The
functions isCoDone and isCoRunning report these flags

Table 3-1 summarizes the meanings of the STOPPED and INIT flags.

Application Frameworks Costatements s 3-7

Table 3-1. Explanation of STOPPED and INIT Flags in CSState

STOPPED INIT Meaning

Yes Yes The costatement either is “done,” or has been
initialized to run from the beginning, but set to
inactive. This condition can be set by CoReset.

Yes No The costatement is paused, waiting to resume exe-
cution from wherever it was paused. This
condition can be set by CoPause.

No Yes The costatement has been initialized to run from
the beginning, and will run when the program
execution reaches it. This condition can be set by
CoBegin.

No No The costatement is active and running and will
resume execution where it left off when the
program execution reaches it. This is the normal
condition of a running costatement. CoResume
will return the flags to this state.

The function isCoDone returns true (1) if both the STOPPED and INIT
flags are set.

The function isCoRunning returns true (1) if the STOPPED flag is not set.

The CSState field applies only if the costatement has a name. The
CSState flag has no meaning for unnamed costatements.

Last Location

The two fields lastlocADDR and lastlocCBR represent the 24-bit
address of the location at which to resume execution of the costatement. If
lastlocADDR is zero (as it is when initialized), the costatement executes
from the beginning, subject to the CSState flag. If lastlocADDR is
nonzero, the costatement resumes at the 24-bit address represented by
lastlocADDR and lastlocCBR.

These fields are zeroed when (1) the CoData structure is initialized by a
call to _GLOBAL_INIT, CoBegin or CoReset, (2) the costatement is
executed to completion, or (3) the costatement is aborted.

Check Sum

The ChkSum field is a one-byte check sum of the address. (It is the
exclusive-or result of the bytes in lastlocADDR and lastlocCBR.) If
ChkSum is not consistent with the address, the program will generate a run-
time error and reset. The check sum is maintained automatically. It is
initialized by _GLOBAL_INIT, CoBegin and CoReset.

Dynamic C 5.x3-8 s Costatements

First Time

The firsttime field is is a flag that is used by waitfor statements. It is set to
1 before the waitfor expression is evaluated the first time. This aids in
calculating elapsed time for the functions DelayMS, DelaySec, and
DelayTicks.

Content

The content field (a union) is used by the costatement delay routines to
store a delay count.

Check Sum 2

The ChkSum2 field is currently unused.

The Implementation of Costatements

The following details explain how costatement-specific statements are
implemented.

yield

At a yield statement, the processor (1) stores the address of the following
statement in lastlocADDR and lastlocCBR as the resume address, and
(2) exits the costatement. Consequently, when the costatement is executed
again, it continues from the statement that follows the yield statement.

abort

At an abort statement, the processor (1) resets lastlocADDR and
lastlocCBR to zeros to indicate the costatement is reset, and (2) exits the
costatement block.

waitfor

The waitfor statement can be viewed as the following equivalent code.

x->firsttime = 1;
while(!expression) yield;

where x->firsttime will become 0 (reset by Dynamic C) after the
expression is evaluated. In this code, *x is the CoData structure corre-
sponding to the costatement. The field firsttime indicates whether it is
the first time the expression is evaluated.

The firsttime Flag and firsttime Functions

A firsttime function is a delay function that can be called from a
waitfor statement. For example, the first time the DelayMs function is
called, it must set up the countdown variables for the specified amount of
delay (stored in the field content of a CoData structure. All subsequent
calls to DelayMs merely check whether the delay has expired. The
initialization flag must be associated with the CoData structure because
several costatements may call DelayMs.

Application Frameworks Costatements s 3-9

A firsttime function is declared with the keyword firsttime. A
proper firsttime function definition would look like this.

firsttime int MyDelay(CoData *ptr, delay
params...){

some code
}

The first argument of a firsttime function must always be a pointer to a
CoData structure. A firsttime function will use this pointer to check
whether the costatement�s firsttime field is 1. If so, the function will
set up variables required to count the delay. The firsttime function
should also set the firsttime flag to 0 so subsequent visit to the
waitfor do not reset the delay counter.

Calling a First-Time Function

From within a costatement, use a firsttime function as an argument to a
waitfor statement.

costate{
...

waitfor(MyDelay(1000));
...
}

Note that the call to MyDelay has only one parameter. The CoData
pointer, required in the function definition, is not to be included in the call.
The compiler automatically passes the address of the CoData structure as
the first argument if a firsttime function is called from within a costate-
ment.

Associated Keywords and Functions

waitfor

A costatement can wait for an event, a condition, or the passage of a
certain amount of time. For this purpose, there is the waitfor statement,
permitted only inside a costatement.

waitfor (expression);

The waitfor suspends progress of the costatement, pending some
condition indicated by expression.

When a program reaches waitfor, if expression evaluates false (zero),
the reentry point for the costatement is set at the waitfor statement and
the program jumps out of the costatement. Then, the program evaluates
the waitfor expression each time it reenters the costatement. If the
expression is false, the program jumps out again. If the expression is true
(nonzero), the program continues with the statement following the
waitfor.

Dynamic C 5.x3-10 s Costatements

Delay Functions

Three special functions (others can be added) allow delays to be used in
the expression evaluated by a waitfor.

int DelaySec(ulong seconds);

int DelayMs(ulong milliseconds);

int DelayTicks(uint ticks);

Thus, expressions such as the following can be used.

// wait for 30 minutes
waitfor(DelaySec(30L*60L));

// wait for device or 40 milliseconds
waitfor(DelayMs(40L) || device_ready());

These delay functions depend on the virtual driver. Initialize the virtual
driver with a call to VdInit before they can be used.

See Chapter 4, The Virtual Driver.$
yield

A costatement can yield to other costatements. The yield statement is
permitted only inside a costatement.

yield;

The yield makes an unconditional exit from a costatement.

abort

A costatement can terminate itself using the abort statement, permitted
only inside a costatement.

abort;

The abort statement, in effect, causes the execution to jump to the very
end of the costatement, where it exits. The costatement will then termi-
nate. If the costatement is always on, the next time the program reaches it,
it will restart from the top. If the costatement is not always on, it becomes
inactive and will not execute again until turned on by some other software.
(Unnamed costatements are always on.)

Other Functions

� void CoBegin (CoData *cd)

CoBegin initializes a CoData structure. The INIT flag is set, but the
STOPPED flag is clear.

� void CoReset (CoData *cd)

CoReset resets a CoData structure. The STOPPED and INIT flags are
both set.

Application Frameworks Costatements s 3-11

� void CoPause (CoData *cd)

CoPause pauses a CoData structure. The STOPPED flag is set, but the
INIT flag is clear.

� void CoResume (CoData *cd)

CoResume resumes a CoData structure. The STOPPED and INIT flags
are both clear.

� int isCoDone (CoData *cd)

The function isCoDone returns true (1) if both the STOPPED and INIT
flags are set. Otherwise it returns 0.

� int isCoRunning (CoData *cd)

The function isCoRunning returns true (1) if the STOPPED flag is not
set. Otherwise it returns 0.

Costatement Topics

Timing Issues

Costatements in most instances are grouped as periodically executed tasks.
A costatement can be part of a real-time task, which executes every n
milliseconds, as shown in Figure 3-2.

costate{ ... }

costate{ ... }

costate{ ... }

costate{ ... }

...

 exit

enter every n milliseconds

Figure 3-2. Costatement as Part of Real-Time Task

If all goes well, the first costatement will be executed at the periodic rate.
The second costatement will, however, be delayed by the first costatement.
The third will be delayed by the second, and so on. The frequency of the
routine and the time it takes to execute comprise the granularity of the
routine.

Dynamic C 5.x3-12 s Costatements

If the routine executes every 25 milliseconds and the entire group of
costatements executes in 5 to 10 milliseconds, then the granularity is 30 to
35 milliseconds. Therefore, the delay between the occurrence of a
waitfor event and the statement following the waitfor can be as much
as the granularity, 30 to 35 milliseconds. The routine may also be inter-
rupted by higher priority tasks or interrupt routines, increasing the varia-
tion in delay.

The consequences of such variations in the time between steps depends on
the program�s objective. Suppose that the typical delay between an event
and the controller�s response to the event is 25 milliseconds, but under
unusual circumstances the delay may reach 50 milliseconds. An occa-
sional slow response may have no consequences whatsoever. If a delay is
added between the steps of a process where the time scale is measured in
seconds, then the result may be a very slight reduction in throughput.

If there is a delay between sensing a defective product on a moving belt
and activating the reject solenoid that pushes the object into the reject bin,
the delay could be serious. If a critical delay cannot exceed 40 millisec-
onds, then a system will sometimes fail if its worst-case delay is 50 milli-
seconds.

waitfor Accuracy Limitations

If an idle loop is used to implement a delay, the processor continues to
execute statements almost immediately (within nanoseconds) after the
delay has expired. In other words, idle loops give precise delays. Such
precision cannot be achieved with waitfor delays.

A particular application may not need very precise delay timing. Suppose
the application requires a 60-second delay with only 100 milliseconds of
delay accuracy; that is, an actual delay of 60.1 seconds is considered
acceptable. Then, if the processor guarantees to check the delay every
50 milliseconds, the delay would be at most 60.05 seconds, and the
accuracy requirement is satisfied.

Application Frameworks Costatements s 3-13

Dependency Relations Among Costatements

A program can contain a large number of costatements. In general, there
will be groups of costatements that share the same loop or the same
context. Costatements in a second context that preempt costatements in
the first context are restricted in how they can share data, so special care
must be paid to mutual communication among preempting tasks.

Costatements may be initially OFF, initially ON, or ALWAYS ON. Those
that are not always on can be turned on remotely, even across preempting
tasks.

The following code will start a remote costatement and wait for its
completion:

costate...{
...
CoBegin(name);
waitfor(isCoDone(name));
...

}

Setting the start field does not actually cause the costate-
ment to execute. This simply means that the costatement is
active and is ready to execute. The calling program�s
execution thread must pass through the costatement.

!

However, this code works when only one task can request the costatement
at a time. If several tasks request the execution of a costatement at the
same time, the costatement will certainly execute�once, maybe twice. In
general, each of the multiple requesters is not guaranteed a separate
execution of the costatement.

Request the execution of a costatement in the following cases.

� The requester and requestee are in different tasks, where one
preempts the other, so direct calls are out of the question.

� Multiple costatements must start simultaneously, something that
cannot be done with a direct call.

� One task needs to start another, but no further synchronization is
needed between the tasks.

Dynamic C 5.x3-14 s Costatements

Nesting Costatements

If a costatement needs to run another costatement as a subtask, where the
original task cannot proceed until the subtask has completed, a direct call
using a waitfor is probably the best way to accomplish the desired end.
This is done by placing the subordinate costatement in a C function that
returns 0 on each pass of the execution thread except the last pass, when
completion occurs, at which time it returns 1.

// Upper level call within a costatement
costate...{

waitfor(function(args));
}

// function outline
int function(args){

...
costate...{

flag=0;

body of costatement

flag=1;
}
return flag;

}

In this case, the subroutine is called repeatedly each time the execution
thread passes through the waitfor. The subroutine returns zero each
time, until the execution of the costatement is completed, when it returns a
one, satisfying the waitfor in the upper-level costatement. This approach
has the additional advantage of providing local variables and arguments
that are passed. A disadvantage is that the arguments must be passed
repeatedly.

Application Frameworks Costatements s 3-15

Error Exits from Costatements

In special circumstances, such as the failure of a communication link, it
may be necessary to make an error exit from a costatement or group of
costatements.

A costatement can be aborted, either (statically) by writing abort in the
costatement directly, or (dynamically) by calling the function CoReset to
terminate a remotely executing costatement.

costate xxx always_on {
if(bad condition) abort;

}

OR

if(bad condition) CoReset(&xxx);

Use of setjmp and longjmp for Error Exit

Programmers use the setjmp and longjmp functions to perform an error
exit from nested functions. If the nested functions contain costatements, it
is usually necessary to reinitialize the costatements as a part of the error
exit. When costatements are nested, the nesting is usually rebuilt on each
pass of the execution thread.

For example, the following nested costatements might be involved in
outputting data to a user terminal.

costate X { // outermost level
waitfor(printmenu());

}
printmenu(){

costate Y { // intermediate level
waitfor(cursorpos());

}
}
cursorpos(){

costate Z { // innermost level
waitfor(sendstring());

}
}

In this example, the outermost costatement X waits for a lower level
routine to print a menu. The printmenu routine in turn waits for a cursor
positioning routine, which in turn sends a string to the terminal, and waits
for the completion of sendstring. Since costatements are used at each
level, the function nest is rebuilt and torn down on each pass of the
execution thread. However, the reentry position at each level for each
costatement is held in static storage. If the sendstring routine runs into
trouble, a longjmp may provide an appropriate escape. The setjmp and
longjmp would be structured as follows in this case.

Dynamic C 5.x3-16 s Costatements

// in the global declarations
jmp_buf savreg; // storage for longjmp
...

// in your highest level function...
if(setjmp(savreg)){

code to recover from error

CoReset(&Z); // terminate sendstring
CoReset(&Y); // terminate cursorpos
CoReset(&X); // terminate printmenu

}
...

// the call to the nested costatements
costate X {

waitfor(printmenu(args));
}
...

// somewhere in your code will be an error exit
if(error) longjmp(savreg,1);
...

Detecting Errors In waitfor Statements

Sometimes there may be a time limit on how long to wait for a certain
condition.

costate xxx always_on {
...
waitfor(DelayMs(200L) || x);

if(!x){ // x not set and we can�t wait
errorflag = 1; // any longer!
abort;

}
}

It is important that x not change between the test in the waitfor and the
test following the waitfor. There would be no risk of change if x reflects
a condition that is updated, for example, at the top of a costatement loop,
and remains stable through out the loop. If x is subject to change, then a
different scheme, such as the following, could be used.

costate xxx always_on {
...
waitfor((flag_DelayMs(200L))||x);
if(flag){ // x not set and we can�t wait

errorflag = 1; // any longer!
abort;

}
}

Application Frameworks Costatements s 3-17

waitfor and Problems with Evaluating C Expressions

A potential problem arises with the logical operators || (OR) and &&
(AND), which are subject to short-circuit evaluation rules. Remaining
terms in an OR expression, such as a || b || c, are not evaluated if any
of the preceding terms are true. Remaining terms in an AND expression,
such as a && b && c, are not evaluated if any of the preceding terms are
false.

Furthermore, the DelayMs routine does not start its time delay until it is
actually called. An expression such as

waitfor(test && DelayMs(50L));

has the (perhaps unexpected) result of waiting until test is true and then
waiting 50 milliseconds more. Because of short-circuit evaluation rules,
DelayMs will not be evaluated if test is false.

If the order of the terms is reversed,

waitfor(DelayMs(50L) && test);

it waits for test, but not less than 50 milliseconds. It is possible to avoid
short-circuit evaluation problems by using the bitwise AND and OR
operators (| and &).

Dynamic C 5.x3-18 s Costatements

Application Frameworks The Virtual Driver s 4-1

THE VIRTUAL DRIVER

The virtual driver is a set of functions available for Z-World controllers
that provides several services. Chapter 4 discusses the following topics.

� Periodic timer interrupts

� Global initialization

Dynamic C 5.x4-2 s The Virtual Driver

Periodic Timer Interrrupts
To invoke the virtual driver, a program must include VDRIVER.LIB in its
list of libraries. A call to VdInit must be included at the beginning of the
program. The virtual driver is called 1280 times per second by a clock
interrupt. If no real-time kernel, fastcall, or virtual watchdog is in use, the
virtual driver just updates the second, millisecond, and tick timers used by
the DelaySec, DelayMs and DelayTicks functions.

Figure 4-1 summarizes the operation of the virtual driver at each clock
interrupt discussed in this chapter.

Enter virtual driver on
timer interrupt every
1/1280 second

Increment tick counter.
Service millisecond timer.

Call user-defined
FASTCALL function if
user-specified number of
ticks have occurred.

FASTCALL
 defined?

yes

32nd
 pass?

no
exit

RTK or SRTK
defined?

no
exit

Service second timer. Hit
the hardware watchdog
and virtual watchdogs.

Call RTK or SRTK

exit

Figure 4-1. Operation of Virtual Driver at Various
Clock Interrupts

Application Frameworks The Virtual Driver s 4-3

Calling Sequence

To enable or disable the various services of the virtual driver, include
#define parameters before calling the virtual driver initialization function
(VdInit). The examples below illustrate how to do this.

// # RTK tasks. For RTK only, no default
#define NTASKS nn

// max # of virtual watchdog timers, default 10
#define N_WATCHDOG nn

// load and run RTK or SRTK, default off
#define RUNKERNEL state // 1 true, 0 off

// load fastcall, but don�t run it
#define VD_FASTCALL state // 1 load, 0 don�t load

// initialize the virtual driver. default off
VdInit();

// init fastcall to be called every nn (0-255) clock
interrupts.

// It�s off (nn=0) by default. Must be called after VdInit()
vd_initquickloop(nn);

The RTK Driver

If #define RUNKERNEL 1 is defined in a program that uses the virtual
driver, the function will call the real-time kernel (RTK) or simplified real-
time kernel (SRTK) every 25 milliseconds. To use a real-time kernel, the
program must use RTK.LIB or SRTK.LIB.

The Fastcall Driver

If the virtual driver is active, and

#define VD_FASTCALL 1

has been declared, a vd_quick_loop function will be called every nn
clock interrupts. The programmer is expected to provide the
vd_quick_loop function. (If the function is not provided, the virtual
driver will call a dummy routine). The term nn is a number from 0 to 255,
defined by vd_initquickloop(nn), as shown in the calling sequence.
If nn = 0, then FASTCALL is turned off. If nn = 1, vd_quick_loop is
called 1280 times per second. If nn = 255, vd_quick_loop is called
5 times per second. Call vd_initquickloop after VdInit, otherwise nn
will be reset to zero.

FASTCALL may be used with both the RTK and the SRTK, and without ei-
ther. The vd_quick_loop function will preempt the highest priority tasks
in either kernel. FASTCALL provides a method for running very fast tasks
that must have response times on the order of a few milliseconds, or that
need to be invoked as continuations of interrupt routines. The function
DelayTicks has a waitfor granularity of less than a millisecond.

Dynamic C 5.x4-4 s The Virtual Driver

Virtual Watchdog Timers

The virtual driver has a scheme for establishing any number of indepen-
dent watchdog timers in software. Each virtual watchdog is a byte that is
decremented every 25 milliseconds. If any virtual watchdog reaches zero,
the virtual driver deliberately times out the hardware watchdog, causing a
hardware reset. The maximum number of virtual watchdogs is set by the
parameter N_WATCHDOGS, which defaults to 10. Create virtual watchdogs
with this call.

wd = VdGetFreeWd(count);

This function enables a new virtual watchdog, starts it counting at count,
and returns an integer ID. Make count greater than 1, because otherwise
the watchdog will reach zero and time out on the first decrement.

Once a virtual watchdog is created, it must be �hit� periodically so it does
not time out and reset the system. �Hits� are needed by all the virtual
watchdog timers. Use the function

VdWdogHit(int wd);

to hit the virtual watchdog. (Hitting the watchdog resets its count to the
count value with which it was created.) Use the function

VdReleaseWd(int wd);

to release the virtual watchdog wd.

Global Initialization
When the virtual driver is initialized with VdInit, the driver calls
_GLOBAL_INIT, which executes all the _GLOBAL_INIT function chain
segments in the program and libraries. This results in the initialization of
the entire program. The _GLOBAL_INIT segment must appear after the
variable declarations and before the executable statements.

The initialization statements placed in a _GLOBAL_INIT segment can be
complex C, assembly code with loops, branches, and function calls, or they
can be simple assignments�whatever is required by the code. The
_GLOBAL_INIT segment can take action to precondition all or part of the
hardware, as well as to preset variable data.

Dynamic C treats a variable initialized with the syntax

type name = value; e.g., int i = 0;

as a constant (when compiling to ROM) that cannot be changed. The
_GLOBAL_INIT segment provides a way to perform this type of initialization.

int i;
#GLOBAL_INIT{ i = 0; }

The function chain _GLOBAL_INIT also initializes CoData structures for
costatements, and must be called before a program can use costatements.

Application Frameworks Real-Time Kernels s 5-1

REAL-TIME KERNELS

Two function libraries support preemptive multitasking. These are the
real-time kernel (RTK.LIB) and the simplified real-time kernel
(SRTK.LIB). Chapter 5 discusses these topics.

� The simplified real-time kernel

� The real-time kernel

� Kernel functions

Dynamic C 5.x5-2 s Real-Time Kernels

The real-time kernel (RTK) and the simplified real-time kernel (SRTK) are
included with Dynamic C�s function libraries. The RTK and SRTK allow a
program to be divided into tasks by priority. These tasks can be treated as
separate programs running independently of one another. The execution of
the tasks is interleaved in time. There are two main advantages to this.

1 More urgent tasks (higher priority) are performed in preference to less
urgent tasks.

2 It is easier to write and organize a program when separate tasks or
sequences of events can be handled as if they were isolated from one
another.

The RTK allows many levels of priorities, but the SRTK has only the three
levels listed in Table 5-1.

The background task is code that executes when no other task is executing.

The virtual driver�s FASTCALL service can be used with either kernel to
implement a very high priority task.

Each RTK or SRTK task can contain multiple execution threads by using
costatements.

The Simplified Real-Time Kernel
Unlike the RTK, the SRTK requires no function pointers to tasks. The
routines srtk_hightask and srtk_lowtask are called every 25 milli-
seconds and every 100 milliseconds, respectively, by the virtual driver if
(1) SRTK.LIB is used, (2) RUNKERNEL is defined, (3) the virtual driver is
initialized, and (4) init_srtkernel has been called.

The following example shows a complete simple program using the SRTK.

#use vdriver.lib // or include VDRIVER.LIB and
#use srtk.lib // SRTK.LIB in LIB.DIR

#define RUNKERNEL 1 // use the kernel

int HCOUNT, LCOUNT;

main(){
HCOUNT = LCOUNT = 0;
VdInit(); // Need virtual driver
init_srtkernel(); // Initialize the SRTK
while(1){ ... } // stay alive while SRTK works

}

Table 5-1. Simplified Real-Time Kernel Priorities

Name Frequency Priority
srtk_hightask Every 25 ms High
srtk_lowtask Every 100 ms Low

-none- — Background, lowest

Application Frameworks Real-Time Kernels s 5-3

// This high priority task executes every 25 ms
srtk_hightask(){ HCOUNT++; }

// This low priority task executes every 100 ms
srtk_lowtask(){

LCOUNT++;
costate{ // print every 1/2 second

waitfor(DelayMs(500));
printf(�%d %d\n�, HCOUNT, LCOUNT);

}
costate{ // When HCOUNT gets too big, reset

waitfor(HCOUNT >= 32000);
HCOUNT = 0;
LCOUNT = 0;

}
}

In this example, costatements create two execution threads within the low-
priority task. The SRTK was designed with costatements in mind, al-
though some preemption is available. Background tasks can be placed in
(or called from) the while loop in main. Background tasks will be
preempted by any other task.

In above example, the background task would consume at least 90%
percent of the CPU�even if it does nothing but idle�because the two
higher priority tasks do so little computation.

The Real-Time Kernel
A clock is required for the RTK to operate. The Programmable Reload
Timer (PRT) on the Z180, or any other device that can create periodic
interrupts or �ticks,� can be used for this purpose. Generally, the periodic
interrupts run at a rate of 20 to 500 ticks per second. Higher rates require
a faster microprocessor.

To use the real-time kernel, (1) define an array of task pointers, (2) specify
the number of tasks, and (3) #define RUNKERNEL.

If the virtual driver is used, there is no need to initialize the kernel and
timer interrupts. Timer interrupts will occur 40 times per second. Without
the virtual driver, the kernel and timer interrupts must be initialized
explicitly, and the DelaySec, DelayMs and DelayTicks functions
cannot be used.

Dynamic C 5.x5-4 s Real-Time Kernels

The following example shows how a program might look with and without
the virtual driver.

#define NTASKS 7
#define RUNKERNEL 1
#use RTK.LIB

// the four task prototypes
int heater(), pump(), sensor(), backgnd();

// array of 4 task pointers
int (*Ftask[4])() = { heater, // task 0

pump, // task 1
sensor, // task 2
backgnd };// task 3

/****** WITH VIRTUAL DRIVER ***********/
main(){

VdInit(); // initialize VD and RTK

run_every(0, 5); // run task0 every 5 ticks
run_every(1, 15); // run task1 every 15 ticks
run_every(2,100); // run task2 every 100 ticks

backgnd(); // the lowest priority task
}

/****** WITHOUT VIRTUAL DRIVER *********/
main(){

DI(); // disable interrupts
init_kernel(); // initialize kernel

run_every(0, 5);
run_every(1, 15);
run_every(2,100);

init_timer0(9216); // set timer interrupts 50Hz
EI(); // enable interrupts
backgnd();

}

The program can request that a task be invoked at a particular time (48-bit
time in ticks) or after a certain delay (32-bit count in ticks) or that the task
be invoked every nn ticks (nn being a 16-bit number). A task that is
running can also request that its own execution be suspended for up to m
ticks (16-bit number). Any task or interrupt routine can also request that
another task be run at the first opportunity.

The RTK multitasking capability may be used as a tool to separate control
loops into independent functions or modules. In this case, each task is
specified to run every nn ticks by calling the run_every function once as
part of the program initialization.

Application Frameworks Real-Time Kernels s 5-5

For example, the following scheme could be used for a task to turn on a
valve each time the liquid level in a tank is low.

main(){
...
run_every(4,100); // task4 every 100 ticks
...

}

task4(){
if(level() <= LOW) openvalve();
if(level() >= HIGH) closevalve();
return;

}

If ticks occur 50 times per second, then the state of the valve will be
sampled every two seconds. A very small amount of execution time will be
expended on this task.

If the nature of the task is such that there are several sequences of code
separated by dead time awaiting an external event or waiting for a fixed
time to elapse, then the suspend function could be invoked. In the above
example, suppose that, in order to open the valve, a motor must start, run
for approximately three seconds until a contact is closed, indicating that
the valve is fully open, and then the motor must be turned off. Assume that
the task of closing the valve is similar, and that ticks occur 50 times per
second. The following code could be used.

task4(){
if(level()<=LOW && valveclosed()){

motor(OPEN);
while(valveclosed()) suspend(5);
motor(OFF);

}else if(level()>=HIGH && !valveclosed()){
motor(CLOSE);
while(!valveclosed()) suspend(5);
suspend(10);
motor(OFF);

}
}

The first call to suspend stops the program from executing for the number
of ticks in the argument, five ticks, or 0.1 second. The first while loop
causes the program to suspend repeatedly for 0.1 second until the valve is
no longer closed. (The suspend time allows the time precision for detect-
ing the event to be specified.) The second while loop causes the program
to suspend repeatedly for 0.1 second until the valve closes.

Dynamic C 5.x5-6 s Real-Time Kernels

The additional suspend(10) after the motor closes ensures that the motor
continues to run for ten ticks (0.2 seconds) to close the valve tightly.

The above routine could also be made into an endless loop. In that case it
would be invoked one time by a call such as

request(task4);

at initialization. It would time its own progress by means of calls to
suspend inserted in the code.

Kernel Functions
The following routines control the activity of the RTK.

� void run_at(int tasknum, void* time)

Requests the kernel to run the task specified by tasknum when the
time is greater than or equal to the time specified by the pointer time.
The time pointer points to a 48-bit number (stored least significant byte
first), which is the number of ticks since init_kernel was called.

� int comp48(void* time1, void* time2)

Compares two 48-bit time values. The function returns

�1 for time1 < time2,
�0 for time1 = time2 and
+1 for time1 > time2.

� void gettimer(void* time)

Returns the current 48-bit time to the 6-byte area to which time points.

� void run_after(int tasknum, long delay)

Requests the kernel to run the task specified by tasknum after delay
ticks have occurred.

� void run_every(int tasknum, int period)

Requests the kernel to run the task specified by tasknum every
period ticks. The first request comes after period ticks. This is
exact and no ticks will be gained or lost in the period.

� void request(uint tasknum)

Requests the kernel to run the task specified by tasknum immediately.
If a request for the task is pending, this call has no further effect. The
specified task will be run on a future tick when priorities allow.

� void run_cancel(int tasknum)

Cancels any pending requests for the task specified by tasknum..

Application Frameworks Real-Time Kernels s 5-7

� void suspend(uint ticks)

This routine must be called only from within a given task. It allows the
task to suspend itself for the specified number of ticks, after which it
will continue to be requested automatically. Execution resumes at the
statement following the call to suspend.

If ticks is 0, then the suspension is for an indefinite period of time
until the task is again requested by some outside agent, such as a call to
run_every. Using a while statement is the usual method of using
suspend to wait for an external event:

while(!event()) suspend(20);

This example checks for the event every 20 ticks until the event takes
place, at which point execution continues. The suspension can be up to
65,535 ticks.

Restrictions on the Use of Suspend

When a task is suspended, the RTK saves the top of the stack, as much as
is associated with the task, in a special static array. This array has a default
size of 50 bytes per task. This array larger can be made larger, if the task
has many auto variables, by changing TASKSTORE_SIZE, which is
defined in the library.

When a suspended task resumes execution, the top of the stack is restored
to its previous state. However, the value of the stack pointer can differ,
because lower priority tasks may have started or stopped during the
suspend. They may have had their state saved on, or restored from, the
stack. These problems can result from the actual absolute address of the
stack frame changing.

� Pointers to auto variables or arguments within the task or its subrou-
tines can point to the wrong location after a suspend. Avoid this
problem by using auto variables or arguments only in routines that do
not suspend, directly, or indirectly through a subroutine. Be very
careful about pointers to auto variables, or use only static variables.

� The code generated by the compiler uses the IX register as a stack
frame pointer under the useix option. This creates problems when
using suspend.

After a suspend, the IX pointer is adjusted for any change in the
stack�s absolute address. However the IX register will be incorrect on
return to the function that called the suspended function. This is
because the IX register is saved on the stack on function entry and
restored on function exit. If the function suspends, then the restored IX
register will usually be incorrect. This can cause the following two
types of problems.

Dynamic C 5.x5-8 s Real-Time Kernels

1. Invalid pointers to auto variables or function arguments.

2. Fatal errors from the stack corruption check.

If stack corruption checking is enabled, false stack corrupt messages
can occur because these routines use the IX register to access the stack
information on a return statement. Stack corruption checking can be
disabled globally using the COMPILER OPTIONS command on the
OPTIONS menu. Stack checking can also be disabled by means of the
nodebug keyword in the function declaration.

Problems with suspend are avoided by not using pointers to auto
variables or arguments belonging to the task and by following one of these
rules.

1. Call suspend only from a root task (not a subfunction).

2. Call suspend only from the main program and from first-level
subfunctions, and do not use any auto variables in the root task.
Disable stack corruption checking for the main routine. (auto vari-
ables may be used in subroutines as long as the number of bytes used
for these variables is less than TASKSTORE_SIZE.)

3. Call saveix before calling any function that might call suspend,
directly or indirectly, and then call restoreix after returning from
that call. Calls to saveix and restoreix should be equally (or not at
all) inside any other C statement that modifies the level of the stack.

RTK Internals

The following pseudocode shows the major RTK routines.

BEGIN run_timer
Step timer48 (48-bit timer)
BEGIN task loop

IF task has non-zero suspend count
Decrement count and set task request when
count becomes zero.

ENDIF
CASE operation mode

�run_at�: Set task request flag.
�run_after�: Set task request flag.
�run_every�: Set task request flag.

ENDCASE
END task loop
call rkernel() to invoke next task

END run_timer

Application Frameworks Real-Time Kernels s 5-9

BEGIN rkernel
IF blocked, return, with block entry, to kernel
BEGIN task loop, high priority first

IF task is running, return from kernel
IF task is requested

Set task running and resume execution of task.
Return or suspend.
Clear request flag.

ENDIF
END task loop
Execution never gets here. Background task will
run instead.

END rkernel

The sample program SAMPLES\DEMO_RT.C in Dynamic C demonstrates
the use of the real-time kernel (without the use of the virtual driver). The
demo program has several tasks, which are used as follows.

Task 1 simulates a tank of liquid holding 1000 liters of liquid. When the
level in the tank is low, the level flag is turned on. The level flag is
equivalent to a mechanical level sensor on a physical tank. When the
intake flag is on, 25 liters of liquid enter the tank each tick. Ten liters
leave the tank every tick. If the heater flag is on, the temperature of the
tank increases 1°C every tick. The liquid entering the tank has a
temperature of 20°C. Task 1 runs every five ticks and requests that
Task 2 be run immediately after it completes.

Task 2 is the control loop. Whenever the level in the tank is low, the
intake flag is set, opening the intake valve. When the temperature is
low, the heater flag is set, turning on the heater. The setpoint is the
desired temperature of the tank, held in the variable settemp, which is
56°C by default.

Task 4 simulates the control of a train that goes from station to station,
stopping for a certain time at each station. The suspend function of
the RTK, which allows a task to suspend itself for a certain number of
ticks, controls the speed of the train and the time at the stations. All the
graphical displays and messages generated by this task are actually
output by the background task.

Task 5 is invoked every five ticks and calls the library routine runwatch.
This processes any watch lines entered while the program is running.
Since Tasks 0�4 have a higher priority, they will not be delayed by this
use of watch lines to snoop on the variables of the running program.

Backgnd could be called Task 6, but is named backgnd to emphasize that
it runs when no other task is active. All display updates are performed
by this task. This ensures that vital higher priority tasks are not delayed
by the speed of printf. Also, one printf call cannot interrupt
another printf since printf is not reentrant.

Dynamic C 5.x5-10 s Real-Time Kernels

Application Frameworks Failure and Recovery s 6-1

FAILURE AND RECOVERY

Recovery from failures is a complex subject that is beyond the scope of
this manual. Chapter 6 discusses the following topics briefly.

� Software failures

� Hardware failures

� The watchdog timer

� Reset and super-reset

� Protected variables

Dynamic C 5.x6-2 s Failure and Recovery

Even if a program is written and compiled correctly, the program may still
crash because of conditions that are beyond the control of the programmer
and the compiler. For example, blackouts, brownouts and power spikes
can put the controller in an unpredictable state. Therefore, crash detection
and recovery is an important issue for all embedded applications.

Z-World is aware of this issue, and has derived methods and support
routines to facilitate the development of robust embedded systems.

As a rule, the logic associated with the detection and handling of errors can
be expected to be a substantial portion of a program�s overall code.

Z-World provides various ways to detect failures.

Software Failures
Certain software-related failures can be actively verified. For example, if
the program is compiled with the debugging options activated, the com-
piler inserts code to do the following.

1. Check for stack integrity.

2. Check for pointer store validity.

3. Check for array bound overflowing.

If such exceptions occur, the debugging code generated by compiler calls
the routine exception, which in turn calls the function to which
ERROR_EXIT points. To handle such exceptions correctly, make sure that
ERROR_EXIT contains the address of a correct exception handler.

Hardware Failures
Hardware-related failures are difficult to verify actively with software
because the software runs on the failing hardware! The only verifiable
hardware failure is power failure. Special hardware on the controller
detects low voltage before the power goes out completely. This causes a
nonmaskable interrupt (NMI), and the processor executes the handler for
the NMI. There is usually not much time between the NMI and complete
power failure.

Refer to a specific controller manual for details on how best
to write a power failure routine for that controller.$

Application Frameworks Failure and Recovery s 6-3

Hardware Watchdog Timer
A hardware watchdog timer is a device that will reset the processor on the
controller unless the timer receives a signal from the software within a
specified time, usually about 1.6 seconds. The software must �hit� the
watchdog timer. A correctly functioning program, which elects to use a
watchdog timer, will periodically hit the watchdog at critical places to keep
the processor from resetting. The assumption is that a failure must have
occurred if the watchdog is not hit, and the system will reset to allow the
software to attempt a recovery.

The virtual watchdog timers described in Chapter 4, TheVirtual Driver, in
this manual work by entering an endless loop so the hardware watchdog
times out. Multiple virtual watchdog timers allow a programmer to create
more robust error handlers by monitoring several different tasks separately
for missed execution.

Reset and Super-Reset
A reset because of a power failure, a software failure or a watchdog
timeout causes the program counter to be reset to 0000

H
. The Dynamic C

BIOS restarts the program automatically in these cases.

Z-World�s super reset is a mechanism to initialize certain data in battery-
backed RAM. A normal reset would not initialize these data, but would
retain their values. A super reset always occurs when a program is first
loaded.

It is therefore necessary to distinguish whether the program is starting from
scratch during a genuine startup, or is merely recovering from a failure. If
it is a genuine startup, the program must initialize its variables. If recover-
ing from a failure, the program should recover critical data from before the
failure.

Certain controllers can report whether the crash occurred because of a
power fail or a watchdog timeout. Such abilities are quite helpful. Even
so, a more general approach is necessary to detect these and other kinds of
failures.

For this purpose, then, the Dynamic C compiler places a time stamp in
each program. The time stamp is passed as an argument to main. It is
highly unlikely that two programs would ever have the same time stamp.
Thus, when a program is starting up the first time, assume that the previous
program, whatever it might have been, had a different time stamp. And, if
the previous time stamp is the same as the current time stamp, this is a
simple reset, not a super reset.

Dynamic C 5.x6-4 s Failure and Recovery

An example of a program performing a conditional super-reset is shown
below.

// CCVer is the version of the compiler
// Sec is the number of seconds from
// the beginning of 1980

main(int CCVer, ulong Sec){
static ulong CurSec;
if(Sec != CurSec){ // super-reset

CurSec = Sec;
perform super initialization

}else{ // reset due to a crash
perform recovery

}
...

}

This code only works if there is battery-backed RAM that stores CurSec.
It could be modified to use flash EPROM or EEPROM.

Recovery of Protected Variables
Z-World provides a language construct and support routines for low-level
recovery of important variables. This is particularly important if the
application uses part of the battery-backed RAM to store log files because
the log files (and the associated data structures) must persist over crashes.

A variable may be declared to be protected. When a variable (or
structure) is protected, the compiler generates the program so that, when it
stores a value in the variable, it will (1) make a backup copy of the
variable, (2) set a flag indicating the backup copy is valid, (3) change the
variable, and (4) reset the flag. If the controller fails during the write to the
variable, the Z-World recovery function _prot_recover will check the
flag and reestablish the correct version.

Application Frameworks Failure and Recovery s 6-5

The following code shows how the previous example would be modified to
include recovery for protected variables.

protected long CriticalVar;

// CCVer is the version of the compiler
// Sec is the number of seconds from
// the beginning of 1980

main(int CCVer, ulong Sec){
static ulong CurSec;
if(Sec != CurSec){ // super-reset

_prot_init();
CurSec = Sec;
perform super initialization

}else{ // reset due to a crash
perform recovery
_prot_recover();

}
...

}

The function _prot_init initializes Dynamic C�s internal protection data
structure. Call _prot__init before setting CurSec. The function
_prot_recover recovers the damaged variable. (Note that only one
variable could possibly be damaged if a system failure occurred.)

Dynamic C 5.x6-6 s Failure and Recovery

Application Frameworks The Five-Key System s 7-1

THE FIVE-KEY SYSTEM

The five-key system is a library of functions (FK.LIB) supporting human
use of the LCD and the keypad on Z-World�s PK2100 and PK2200 series
controllers. Chapter 7 discusses the following topics.

� Features for the operator

� Features for the programmer

� The five-key functions

Dynamic C 5.x7-2 s The Five-Key System

The five-key system uses the LCD and the keypad on Z-World�s PK2100
and PK2200 series controllers. Figure 7-1 shows the standard assignment
of the keys on the keypad..

The LCD has two lines of 20 characters in the standard version. Other
versions are available. An underline cursor may be positioned under any
character.

The five-key system uses the costatement programming paradigm and runs
under the simplified real-time kernel. There also is an old five-key system
library (5KEY.LIB) that requires the real-time kernel. The 5KEY.LIB
library is described in Appendix B.

The five-key system provides a simple scheme for changing operating
parameters. It is possible to cycle through a number of menus by pressing
the MENU key. For each menu, a number of items may be selected by
pressing the ITEM key. Each item may have one or more fields, each of
which is selected by pressing the FIELD key.

When the desired parameter is selected, adjust the parameter by pressing
the UP or DOWN keys. These keys cycle forward or backward through a
list of acceptable values. It is not possible to select a wrong value.

In addition to the five keys, the HELP key provides help in context for
each specific menu item. The keys F1, F2, F3, F4, del, and add can each
be programmed for a specific task.

Operator Features
The five-key system allows an operator to do the following tasks.

� Update parameters using the five keys�MENU, ITEM, FIELD, UP,
and DOWN. Parameters can be of several types: string, float, integer,
unsigned, time string, and date string. An enumerated parameter acts as
a menu allowing the user to choose from a list of choices identified by
user-defined strings. The five-key system continues to operate and
respond to key presses while it displays messages or parameter values.

� Ask for help�using the HELP key�on any five-key menu or param-
eter.

Figure 7-1. PK2100/PK2200 Keypad

menu
setup

item field
run up down

help
init

F2 F3 addF4 delF1

Application Frameworks The Five-Key System s 7-3

Programmer Features
A programmer may extend the five-key system in these ways.

� Write code to use the F1, F2, F3, F4, add and del keys.

� Provide help messages via the HELP key.

The five-key system is programmed in the following way.

1. Initialize the virtual driver and simplified real-time kernel (SRTK).

2. Call fk_monitorkeypad from the high-priority SRTK task.

3. Follow the model shown in the sample code below to define menu
titles, prompts and menu items in the SRTK low-priority task or a
function called by it.

Sample Code

The following code shows how a program using FK.LIB might appear.
Refer to the Dynamic C sample program SAMPLES\FKEY\FKSAMP.C for a
complete sample program.

// SAMPLE PROGRAM

#use srtk.lib

#use fk.lib

#use vdriver.lib

#nointerleave

#define RUNKERNEL 1
float f;
int i;
uint u;
char strng[11];
main(){

strcpy(strng,�abcdefghi�);
f = 25.34;
i = 15;
u = 5;
VdInit(); // SRTK needs virtual driver
init_srtkernel(); // initialize the SRTK
up_beepvol(1); // needed for PK2100 beeper

// loop while SRTK works
while(1){} // background processing

}

// HIGH PRIORITY TASK
srtk_hightask(){

fk_monitorkeypad();
...

}

// continued next page

Dynamic C 5.x7-4 s The Five-Key System

// LOW PRIORITY TASK
srtk_lowtask(){

fivekey_lo_task();
...

}

// FIVEKEY TASK
int fivekey_lo_task(){

costate{
fk_helpmsg(); // put up help messages
PutMenus();
user_keys(); // process user keys

}
}
int PutMenus(){

extern char fk_newmenu;
int choice;

costate{
for(;;){ // loop through all the menus

lcd_erase();
lcd_printf(0l, �time/date menu�);
fk_newmenu=0;
for(;;){ // begin menu 1

waitfor(fk_item_setdate(Time));
if (fk_newmenu) break;
waitfor(fk_item_settime(Time));
if (fk_newmenu) break;

} // end menu 1
lcd_erase();
lcd_printf(0x00000000l,�I/O Menu1");
fk_newmenu=0;
for(;;){ // begin menu 2

waitfor(fk_item_enum(�enum sel %8s�,
&choice,�first�,�second�,
�third�,�last�,0));

if(fk_newmenu) break;
waitfor(fk_item_int(�integer = %4d�,

&i,10,1000));
if(fk_newmenu) break;
waitfor(fk_item_uint(�uint = %2u�,

&u,0,10));
if(fk_newmenu) break;
waitfor(fk_item_alpha(�Alpha = �,

strng,strlen(strng)));
if(fk_newmenu) break;
waitfor(fk_item_float(�Float =%8.4f�,

&f,-900.,9999.));
if(fk_newmenu) break;

} // end menu 2
} // end menu loop

} // end costatement
return 1;

}
int user_keys(){

... // handle bottom row keys
}

Application Frameworks The Five-Key System s 7-5

Special Key Combinations

The board resets when the menu key and certain other keys are held down
simultaneously for more than 0.5 seconds. The keys that work in these
combinations all have sublabels to describe their actions. These resets are
described in Table 7-1.

The function fk_monitorkeypad described below detects these two key
combinations.

Five-Key Functions

� void fk_monitorkeypad()

Monitors the keypad for keys pressed. This function should be called
as an SRTK or RTK high-priority task. It sets global variable fk_tkey
to values from 1 to 12 depending on the key pressed. The value is 0 if
no key is pressed.

The function also monitors for the 2-key reset combination. If a reset
combination is detected, the function will not return but will force a
watchdog timeout. There is no buffer. Key presses should be pro-
cessed within 100 milliseconds or they will be lost.

� int fk_helpmsg(char **hptr)

Displays a series of help messages when the HELP key is pressed. The
current display is saved and each message string is displayed for
1.8 seconds, then the previous display is restored. The input should be
an array of strings declared like this.

char *hptr[]={�Str 1�,�Str 2",...,�StrN�,��};

The last string must be null. The function returns nonzero if help is
off, and zero if help is on.

Table 7-1. PK2100/PK2200 Keypad Resets

Key Strokes Result

menu + field
(setup + run)

Restart the program currently loaded.

menu + up
(setup + pgm 19.2)

Put the board in program mode with PC serial
communications set to 19,200 baud.

menu + down
(setup + pgm 28.8/38.4)

Put the board in program mode with PC serial
communications set to 28,800 baud for the
PK2200, and to 38,400 baud for the PK2100.

Dynamic C 5.x7-6 s The Five-Key System

� int fk_item_alpha(char *s1, char *var,
int wdsize)

Modifies a string using the five-key system. The term *s1 is a string
containing a prompt. The term *var is the string to be displayed and/
or modified. wdsize is the maximum length of the word string to be
edited.

� int fk_item_setdate(struct tm *time)

A five-key function to modify the day, month and year fields of a tm
structure. The term *time is the structure to be modified.

� int fk_item_settime(struct tm *time)

A five-key function to modify the hour, minute and second fields of a
tm structure. The term *time is the structure to be modified.

� int fk_item_int(char *string, int *num,
int lower, int upper)

Displays/modifies an integer number using the five-key system. The
term *string is a printf format having the form %nu, where n is one
digit, for example, %5d. The term *num is the integer to be displayed
and/or modified. The arguments upper and lower are the upper and
lower limits for the number.

� int fk_item_uint(char *string, uint *num,
uint lower, uint upper)

This function is the same as fk_item_int, but applies to unsigned
integers. (Remember that uint is a convention in this manual only and
is not a C keyword.)

� int fk_item_float(char*s1, float *num,
float lower, float upper)

Displays/modifies a floating-point number using the five-key system.
The term *s1 is a printf format for displaying the number. The
format code should be in the form of %n.mf. The displayed line
appears as follows.

vvvvvv wwww.yyyy

where vvvvv is a prompt string , wwww is n chars long. and yyyy is m
chars long. The value n must be at least 1. The sum n + m cannot
exceed 9. The default is n = 6 and m = 3. The term *num is the
floating-point number to be displayed and/or modified. The arguments
upper and lower are the upper and lower limits for the number. This
function will work for numbers in the ranges [1E6,-1E-4], [1E-4,1E6]
with the appropriate format specification.

Application Frameworks The Five-Key System s 7-7

� int fk_item_enum(char *prompt, int *choice,
char *s1,...*sn, ��)

Allows the user to choose from a list of null terminated strings (maxi-
mum 20). The string *prompt must contain a string field code (%s or
%ns) used to print the strings. The last of the strings (after *s1, ...
*sn) must be null. The term *choice returns the choice made by the
user, and is from 0 to (n - 1).

Reading the Keypad without FK.LIB
The following program illustrates a way to read keystrokes without using
FK.LIB or SRTK.LIB. The virtual driver is still required. The function
lc_kget is found in LCD2L.LIB. It detects and responds to 2-key reset
combinations.

#use vdriver.lib
int key;
main(){

VdInit();
for(;;){

if(key = lc_kget(0)) printf(�key =
%d\n�,key);

}
}

Dynamic C 5.x7-8 s The Five-Key System

Application Frameworks RS-232 Communication s 8-1

RS-232 COMMUNICATION

Z-World supports R-S232 communication (with function libraries) for the
various serial ports found in Z-World controllers and their accessories.
Chapter 8 discusses the following topics.

� Serial communication

� Function libraries and sample programs

Dynamic C 5.x8-2 s RS-232 Communication

Serial Communication
Z-World supports RS-232 communication (with function libraries) for the
following ports.

� Z180 Ports 0 and 1.

� SIO Ports 0 and 1 on the BL1100.

� SCC (Z80C30) Ports A and B on the BL1300.

� The XP8700 expansion card.

The functional support for serial communications consists of the following.

� Initialization of the serial ports.

� Reading data from the receive circular buffer.

� Writing data to the transmit circular buffer.

The RS-232 packages have the following features.

� Circular send and receive buffers serviced with serial interrupts.

� Echo option.

� CTS/RTS control

� XMODEM protocol for downloading and uploading data

� Modem option

Send and Receive Buffers

Serial communication is made easier with a background interrupt routine
updating the send and receive buffers for serial communication. Every
time a new character is received, it is put into the receive circular buffer.
The receive buffer can be read one character at a time, or as a stream of
characters terminated with a special character.

Data are sent by writing to the circular transmit buffer. If the serial port is
not already transmitting, Z-World write functions will automatically initiate
transmission. Once the last character of the buffer has been sent, the
transmit interrupt is turned off. Data may be written one character at a
time or as a stream of characters.

Echo Option

If the echo option is selected when a serial port is intitialized, any character
received is automatically echoed (transmitted back). This feature is ideal for
systems with a dumb terminal and for checking transmitted characters.
With or without echo, the serial drivers automatically parse out the BACK-

SPACE character (ASCII 0x08). A separate function call after initialization of
the serial port can put the serial drivers in BINARY mode, that is, all data are
placed in the serial receive buffer.

Application Frameworks RS-232 Communication s 8-3

CTS/RTS Control

If the CTS/RTS option is selected, the support software will pull the RTS
line high when the receive buffer has reached 80% of its capacity. Thus,
the transmitting device (if its CTS is enabled) will stop transmitting. The
software pulls the RTS line again when the received buffer has gone below
20% of its capacity.

If the device with which the controller is communicating does not support
CTS and RTS, the CTS and RTS lines on the controller side can be tied
together to make communication possible.

XMODEM File Transfer

Z-World supports the XMODEM protocol for downloading data from, and
uploading data to, a controller. Currently, the library supports download-
ing an array of data whose size is a multiple of 128 bytes.

Uploaded data are written to specified area in RAM. The targeted area for
writing should not conflict with the current resident program or data.

The serial driver is put into BINARY mode during XMODEM transfer.
Character echo is suspended.

Modem Communication

Modems allows RS-232 communication across long distances using
telephone lines. If the modem option is selected, character streams that are
read from the receive buffer are automatically parsed for modem com-
mands. If a modem command is found, appropriate actions are taken.
Normally the communication package would be in COMMAND mode
while waiting for valid modem command or messages. Once a link is
established, communication goes into DATA mode (that is, regular RS-232
communication). In DATA mode, the modem is still monitored for a
NO_CARRIER message.

The software assumes that modem commands (for which it scans) are
terminated with CR (carriage return, or ASCII 0x0D). Therefore, the
modem option is easiest to use when the protocol also has CR as the
terminating character. Otherwise, the software has to check for both
terminating characters. The message-terminating character cannot be any
of the ASCII characters used in the modem commands, nor can it be a line-
feed character (0x0A).

The software supports communication with a Hayes Smart Modem or
other compatible modem. The CTS, RTS and DTR lines of the modem are
not used. If the modem used is not truly Hayes Smart Modem compatible,
tie the CTS, RTS and DTR lines on the modem side together. The CTS
and RTS lines on the controller side also have to be tied together. A NULL
connection is also required for the TX and RD lines since both the

Dynamic C 5.x8-4 s RS-232 Communication

controller�s serial port and the modem are data communication equipment
(DCE). A commercial NULL modem would have its CTS and RTS lines
tied together on both sides.

Figure 8-1 shows the correct modem to controller serial connections. The
ISA COM ports 1 and 2 can be connected directly to a modem since they
are already data terminal equipment (DTE).

RX
TX

GND
RTS
CTS
DTR

RX
TX
GND
RTS
CTS

Modem
Side

Controller
Side

Figure 8-1. Modem to Controller Serial Connections

Function Libraries and Sample Programs

Software Support

The functions in this section are described for Port 0 of the Z180. Similar
functions exist for the Z180 Port 1; SIO Ports 0 and 1; SCC Ports A and B,
the XP8700 expansion card, and ISA COM Ports 1 and 2.

See the XP8700 and XP8800 User�s Manual for further
details on the XP8700 expansion card.$

The function names for these ports incorporate the following keys.

Port Key Port Key
Z180 Port 0 z0 SIO Port 0 s0
Z180 Port 1 z1 SIO Port 1 s1
SCC Port A sca ISA COM 1 com1
SCC Port B scb ISA COM 2 com2
XP8700 uart

For example, the initialization routine for Z180 Port 0 is called Dinit_z0
and is described here. The same function for SIO Port 0 is named
Dinit_s0. The equivalent function for the XP8700 expansion card is
Dinit_uart. The equivalent function call for SCC Port B is Dinit_scb.
The equivalent function call for ISA Port 2 is Dinit_com2. Each function
described (for z0) in this section has eight other functions that use the
other keys in their names.

Application Frameworks RS-232 Communication s 8-5

Interrupt Handling

Normally the serial interrupt service routine is declared with this compiler
directive.

#INT_VEC SER0_VEC routine_name

However, if the same serial port is used for Dynamic C programming and
for communication, the program has to be downloaded first through
Dynamic C before the address of the serial interrupt service routine is
loaded into the interrupt vector table. Put simply, the service routine must
be loaded at run time. The function

void reload_vec(int vector, int(*function)());

will load the address of the service routine function into the specified
location in the interrupt vector table. Do not use the #INT_VEC directive
in this case. It is not possible to do any further debugging through
Dynamic C once the service routine has taken over.

For communication with a serial device other than the Dynamic C pro-
gramming port on the PC, the program has to make sure that the hardware
is properly configured before sending any serial messages. For example,
when using the Z180�s Port 0 for serial communication with a modem, the
keypad (PK2100 or PK2200 only) may be used to trigger the initialization
of the serial port. Without such a trigger, the modem might not communi-
cate with the support software properly because the initialization routine
also send commands to the modem to initialize it.

When executable programs are generated for the EPROM or for download
to RAM, there will be no need for communication with Dynamic C. The
compile-time directive (#INT_VEC) can then be used freely.

RS-232 Software

� int Dinit_z0(void* rbuf, void* tbuf,
 int rsize, int tsize,
 byte mode, byte baud,
 byte modem, byte echo)

Initializes Z180 Port 0 for communication.
rbuf pointer to the receive buffer.
tbuf pointer to the transmit buffer.
rsize size of the receive buffer.
tsize size of the transmit buffer.
mode selects the operation mode as follows

bit 0 0=1 stop bit 1=2 stop bits
bit 1 0=no parity 1=with parity
bit 2 0=7 data bits 1=8 data bits
bit 3 0=even parity 1=odd parity
bit 4 0=CTS/RTS off 1=CTS, RTS enabled

Dynamic C 5.x8-6 s RS-232 Communication

baud the baud rate in multiples of 1200 (for example, specify 8
for 9600 baud).

modem If 1, modem is supported. If 0, no modem.
echo If 1, every character is echoed. If 0, no echo.

If CTS/RTS handshaking is selected, transmission from the sender is
disabled (by raising RTS) when the receive buffer is 80% full. The
software lowers RTS (enabling the sender to transmit) when the receive
buffer falls below 20% of capacity. In a similar manner, a remote
system can prevent transmission of data by Z180 Port 0 by asserting its
RTS (connected to the Z180 Port 0 CTS).

� void z0binaryset()

Puts the serial receiver in BINARY mode. This means that all received
characters are placed in the receive buffer.

� void z0binaryreset()

Places the serial receiver in ASCII mode, where the BACKSPACE
character (0x08) is parsed out of the receive buffer. Character echo
also resumes if it was selected.

� int Dread_z01ch(char* ch)

Reads a character from the receive buffer into character ch. The
function returns

0 buffer is empty.
1 byte has been successfully extracted from buffer.

� int Dwrite_z01ch(char ch)

Places a character in the transmit buffer. If not already transmitting, the
function initiates transmission. It returns

0 transmit buffer did not have space for ch.
1 write was successful.

� int Dread_z0(char* buffer, char terminate)

Checks the receive buffer for a message terminated with the character
terminate. The message is copied to buffer. The terminating
character is discarded and the message in buffer is terminated with a
null character according to the C convention.

The function returns

0 no message found with the specified terminating
character.

1 message has been successfully extracted from buffer.

Application Frameworks RS-232 Communication s 8-7

� int Dwrite_z0(char* buffer, int count)

Copies count bytes from buffer to the transmit buffer. If the
transmit buffer is not already transmitting, the function initiates
transmission. It returns

0 transmit buffer did not have space for count bytes.
1 Write is successful.

� void Dz0send_prompt()

Places CR, LF and > in the transmit buffer.

� void Dreset_z0rbuf()

Resets the receive buffer.

� void Dreset_z0tbuf()

Resets the transmit buffer and stops transmission.

� void Dkill_z0()

Disables Z180 Port 0.

Sample Program

This example shows RS-232 communication between a controller and a
PC functioning as a �dumb terminal.�

#define CR 0x0d // carriage return
char baud = 8; // 9600 baud, divided by 1200
char mode = 4; // 1 stop bit

// no parity
// 8 data bits

char ismodem = 0; // no modem is connected
char isecho = 1; // data received are echoed
char tbuf[384]; // circ. transmit buffer
char rbuf[200]; // circ. receive buffer

main(){
char buf[20]; // messages
Dinit_z0(rbuf,tbuf,200,384,mode,baud,ismodem,isecho);
Dz0send_prompt(); // send a prompt
while(1){
// wait for a message terminated with CR

while(Dread_z0(buf,CR)==0);
// here you could do whatever you want with the message
// in this example, the message is sent back

Dz0send_prompt();
Dwrite_z0(buf,strlen(buf)); // send message back

// then, some more ...
Dz0send_prompt();
Dwrite_z0(�it works!�,9); // write another
Dz0send_prompt();

}
}

Dynamic C 5.x8-8 s RS-232 Communication

For modem communication, set ismodem to 1. The baud rate is either
2400 or 1200. The above example above will work just as well when the
PC has dialed up the controller connected to a modem. Z-World recom-
mends using a Hayes-compatible Smart Modem. Otherwise, the modem
connected to the controller would have to have its RTS (4) , CTS (5) and
DTR (20) lines tied together. Also, a NULL modem is required for the
serial connection between the modem and the controller�s serial port.

The equivalent program for the serial communication controller (SCC)
Port A would be as follows.

main(){
char buf[20]; // messages
Dinit_sca(rbuf,tbuf,200,384,mode,baud,ismodem,isecho);
Dscasend_prompt(); // send a prompt
while(1){
// wait for a message terminated with CR

while(Dread_sca(buf,CR)==0);
// here you could do whatever you want with the message
// in this example, the message is sent back

Dscasend_prompt();
Dwrite_sca(buf,strlen(buf)); // send message back

// then, some more ...
Dscasend_prompt();
Dwrite_sca(�it works!�,9); // write another
Dscasend_prompt();

}
}

The serial communication software implements delays with the suspend
function of the real-time kernel (RTK) when the RTK is used. Otherwise,
the delays are implemented with a software countdown loop.

XMODEM Commands

� int Dxmodem_z0down(char* buffer, int count)

Sends (downloads) count 128-byte blocks in buffer using the
XMODEM protocol. The function returns

0 timed-out (no transfer).
1 successful transfer.
2 canceled transfer (canceled by receiver).

� int Dxmodem_z0up (ulong address, int* pages,
 int dest, int(*parser)())

Receives (uploads) a file using XMODEM protocol. The parameters
are described below.

Application Frameworks RS-232 Communication s 8-9

A Hayes Smart Modem (or compatible) is recommended.
A NULL modem is needed between the PK2100 and the
modem.

Some modems may require that the RTS(4), CTS(5) and
DTR(20) lines on the modem side be tied together.

!

address the physical address in RAM where the received data is to
be stored. If the receive buffer is allocated by xdata, then
the name of the array may be used for the address
argument. If, however, the data area is allocated using
�normal� C, the logical address of the buffer must first be
converted to a physical address using the library function
phy_adr.

pages the number of 4-kbyte blocks of data that have been
transferred.

dest If an RS-485 master-slave network is set up, specify dest =
0 when the upload is intended for the master. If dest is
nonzero, the upload is intended for the designated slave.

parser the function that handles parsing of the uploaded data.

The function returns

0 timed-out (no transfer).
1 successful transfer.
2 canceled transfer (canceled by sender side).

Miscellaneous Functions

� int Dget_modem_command()

Deciphers a Hayes-compatible modem command. The function returns
�1 if no modem command is matched.

The modem commands are summarized below.

0 �\nOK� // okay respond

1 �\nCONNECT� // connect at 300 baud
2 �\nRING� // ring detected

3 �\nNO CARRIER� // no carrier

4 �\nERROR� // command error

5 �\nCONNECT 1200� // connect at 1200 baud

6 �\nNO DIALTONE� // no dial tone

7 �\nBUSY� // line busy
8 �\nNO ANSWER� // no answer

9 �\nCONNECT 2400� // connect at 2400 baud

10 �\n� // just a line feed

Dynamic C 5.x8-10 s RS-232 Communication

� void Drestart_z0modem()

Restarts the modem (during start of program or abnormal operation).

� void Dz0modem_chk(char* buffer)

Checks the buffer for valid modem commands. The function takes
the appropriate response to the modem command if it finds a valid
modem command.

The function returns

0 Valid modem command.
�1 Invalid modem command.

� void Dz0_circ_int()

This is an interrupt service routine for Z180 Port 0.

� void Ddelay_1sec()

Creates a 1-second delay (approximately). If RUNKERNEL is defined,
suspend(50) is used to generate the delay.

� void Ddelay_100ms()

Creates a 100-millisecond delay (approximately).

� void reload_vec(int vector, int(*function)())

Load the address of a function into the interrupt vector table.

This function is only useful during program development when the
Z180 Port 0 is also used as the Dynamic C programming port. The
compile-time interrupt directive (#INT_VEC) can load the serial service
function�s address in the interrupt vector table when generating the
executable code for EPROM or for download to RAM.

PARAMETERS: vector is the offset for the specific interrupt.

function is a pointer to the interrupt service function.

reload_vec writes to the flash memory when executed on
a controller with a flash EPROM. Be careful not to have
this function call write repeatedly to the same flash
EPROM address since the flash EPROM has a maximum
of about 10,000 writes.

!

Application Frameworks RS-232 Communication s 8-11

� int getcrc(char* buffer, byte count, int accum)

Computes the CRC (cyclic redundancy check, or check sum) for data in
buffer. Calls to getcrc can be �concatenated� to compute the CRC
for a large buffer.

PARAMETERS: buffer is a pointer to characters for which to
compute the CRC.

count is the number of characters in buffer, limited to 255, for this
function.

accum is the accumulated CRC value from previous computation.

The function returns the integer CRC value.

� void resetZ180int()

This is a generic reset function that resets, or disables, interrupts for the
DMA channels, the Z180 serial channels 0 and 1, the programmable
reload timers, and CSIO, INT1 and INT2.

RS-485 Drivers

If a serial port supports full-duplex RS-485 communication, the same
drivers used for RS-232 communication may be used. Just turn on RS-485
transmission according to the particular port. For example, to use Z180
Port 1 as an RS-485 port, do the following.

outport(ENB485,1);
Dinit_z1(...);

Libraries

Table 8-1 lists the Dynamic C libraries that support serial communication.

Table 8-1. Dynamic C Libraries Supporting Serial Communication

Z0232.LIB Z180 Port 0

Z1232.LIB Z180 Port 1

S0232.LIB SIO Port 0

S1232.LIB SIO Port 1

SCC232.LIB SCC Port A and B

XP87XX.LIB XP8700 PLCBus expansion board

COM232.LIB ISA COM port

MODEM232.LIB Accessory library used by all the preceding libraries

Dynamic C 5.x8-12 s RS-232 Communication

Table 8-2. Dynamic C Serial Communication Sample Programs

RS232.C Simple RS-232 communication using the Z180 Port 0.

XP87XX.C Simple RS-232 communication with the XP8700 PLCBus
expansion board.

Z1232.C Simple RS-232 communication using the Z180 Port 1.

SCC232.C Simple RS-232 communication using SCC Ports A and B.

DOWNLOAD.C RS-232 communication for a monitor program using the
Z180 Port 0 of a PK2100.

Sample Programs

Table 8-2 lists sample programs that illustrate serial communication.

Table 8-3. Dynamic C Sample Programs

Z0REM.C RS-232 communication with Z180 Port 0.

Z1REM.C RS-232 communication with Z180 Port 1.

S0REM.C RS-232 communication with SIO Port 0.

SCCREM.C RS-232 communication with SCC Ports A and B.

UARTREM.C RS-232 communication with the XP8700 PLCBus
expansion board.

CZ0REM.C RS-232 communication with the Z180 Port 0 for the
PK2100 and the PK2200.

CUARTREM.C RS-232 communication with the XP8700 PLCBus
expansion board.

COM232.C Simple RS-232 communication for ISA COM Ports 1 and 2.

COM1REM.C RS-232 communication with the ISA COM Port 1.

COM2REM.C RS-232 communication with the ISA COM Port 2.

The programs in Table 8-3 use the serial port as a diagnostic port. Except
for Z1REM.C and SCCREM.C, these programs are also the master programs
that can talk to a slave running SREMOTE.C or CSREMOTE.C via the
RS-485 half-duplex linkage.

Application Frameworks Master-Slave Networking s 9-1

MASTER-SLAVE NETWORKING

Z-World supports master-slave networks using 2-wire and 4-wire RS-485
networks. The master and slave controllers communicate using a protocol
based on the ninth bit. Chapter 9 discusses these topics.

� Communication protocol

� Hardware connections

� Software support

� Libraries and sample programs

Dynamic C 5.x9-2 s Master-Slave Networking

Z-world has library functions for master-slave two-wire half-duplex
RS-485 9-bit binary communication. This protocol is supported only on
Z180 Port 1, which is configured for RS485 communication on most
Z-World controllers. Boards that provide access to Z180 Port 1 can be the
master or the slave. There should only be one master, which will then have
a board address of 0. The slaves must have their own distinct identifica-
tion numbers from 1�255.

The functional support for the master-slave serial communication consists
of the following steps.

1. Initialization of Z180 Port 1 for RS-485 communication.

2. Master sends inquiry and waits for response from a slave.

3. Slaves monitor for their address during the ninth bit of a transmission.
The targeted slave replies to the master.

Communication Protocol
The binary command message protocol adopted is similar to that used for
the Opto-22 binary protocol. A master message is composed as shown
here.

[slave id] [len] [] []...[] [CRC hi][CRC lo]

The slave�s response is composed as shown here.

[len] [] []...[] [CRC hi] [CRC lo]

The term len is the length of the message that follows.

During a transfer from the master, the address byte is transferred in the
ninth bit of the address mode, and only the slave that matches this address
will listen to the rest of the message, which is sent in regular 8-bit data
mode.

Hardware Connection
Figure 9-1 shows the connections for a two-wire RS-485 network. Any
Z-World�s controller can be a master or a slave. There should only be one
master, but there can be up to 255 slaves.

485 Tx�

485 Rx+

485 Tx+

485 Rx�

PK2100,

BL1100,

and others

BL1200

BL1600,
PK2200,
BL1400,

and others

485+

485�

Figure 9-1. Two-Wire RS-485 Network Connections
with Z180 Port 1

Application Frameworks Master-Slave Networking s 9-3

Some Z-World controllers, such as the PK2200, have half-duplex RS-485
ports. Other controllers, such as the PK2100, have full-duplex RS-485
ports. A full-duplex RS-485 port can be made into a half-duplex RS-485
port by connecting RX+ to TX+ and RX� to TX�.

Software Support

� void op_init_z1(char baud, char* rbuf,
 byte address)

Initializes Z180 Port 1 for RS-485 ninth-bit protocol binary communi-
cation. The data format defaults to 8 bits, no parity, 1 stop bit.

baud selects the baud rate in multiples of 1200 (specify 16 for
19,200 baud).

rbuf the receive buffer.

address the network address of the board: 0 for the master board,
1�255 for slaves.

� int check_opto_command()

Checks for a valid and completed command or reply in the receive
buffer. The function returns with

0 if there is no completed command or message available.
1 if there is a completed command or reply available.
�2 if the completed command or reply has a bad CRC check.

� int sendOp22(byte dest, char* message,
 byte len, int delays)

The master sends a message to the slave and waits for a reply. The
function puts the message in the following format.

[slave id] [len] [] []...[] [CRC hi][CRC lo]

The parameters are identified below.

dest the slave destination (1�255).
message the message.
len the length of the message. The maximum message length

is 251 bytes.
delays the number of delays to wait for the slave reply. Each

delay is ~50 milliseconds. However, if the RTK is in use,
the delay is made by a suspend(2).

The function returns

�1 if there is no reply from the slave.
�2 if a completed reply has a bad CRC.
1 if there is a completed reply with a proper CRC.

The slave�s reply is stored in the receive buffer initialized with
op_init_z1.

Dynamic C 5.x9-4 s Master-Slave Networking

� void replyOpto22(char* reply, byte count,
 int delays)

The slave replies to the master�s inquiry. The function puts the reply in
the following format.

[len] [] []...[] [CRC hi] [CRC lo]

reply the slave�s reply string.

count the length of the reply. The longest reply is 252 bytes
because two CRC bytes are appended at the end.

delays the number of delays before the message is transmitted
back. Each delay is ~50 milliseconds. However, the delay
is made by a suspend(2) if the RTK is being used.

Miscellaneous Functions

� void misticware(char* tbuf, char count)

This is the gateway for RS-485 ninth-bit protocol for binary communi-
cation. The receive and the transmit buffers must already be set up.
Interrupt-driven transmission must be intitialized.

tbuf the transmit buffer. Data in the buffer should already be in
the correct format.

count the number of bytes to be transmitted.

� void optodelay()

This function produces a delay of ~50 milliseconds. The delay is
implemented with a suspend(2) if the RTK is being used. Otherwise,
it is a software countdown delay.

� int rbuf_there()

Monitors the receive buffer for a completed command or reply. The
function returns

1 if a completed command or reply is available.
0 if a completed command or reply is not available.

� void op_send_z1(char* tbuf, byte count)

This function is called by misticware to initiate transmission of data.

� void op_rec_z1()

This function is called by misticware to reset and to ready the
receiver for data reception.

� void op_kill_z1()

Disables Z180 Port 1. The RS-485 driver is also disabled.

Application Frameworks Master-Slave Networking s 9-5

� void z1_op_int()

This is an interrupt service routine for the Z180 Port 1 used in master-
slave networking.

Sample Program

// MASTER.C (running in slave controller)
// The master sends a string of messages to the slave.
// Slave replies. The master prints the reply at STDIO.

char rbuf[255]; // receive buffer
char reply[40]; // reply buffer
char msg[40]; // message buffer

main(){
int i,j,ercode;
VdInit();

// initialize 19200 baud, receive and master
op_init_z1(16,rbuf,0);
j = 1;

while(1){
// wait 10000 counts before polling

for(i = 0; i< 10000; i++) runwatch();
sprintf(msg,�Message # %d�, j++);

// send message to slave 1 and wait for reply
ercode = TalkToSlave(1,msg,strlen(msg),3,reply);
if(ercode == 1){ // if reply is valid

printf(�%s\n�, reply);
}else{ // if bad reply or link failure

printf(�Link Failure or Bad Link\n�);
}

}
}

int TalkToSlave(int slave_no, char *query,
 int len, int ndelay, char *reply){

int i,ercode;
// sends message and waits for reply
ercode = sendOp22(slave_no, query, len, ndelay);

// if reply is valid, copy to reply buffer
if(ercode == 1){

for(i = 0; i < rbuf[0] - 2; i++){
reply[i] = rbuf[1+i];

}
reply[i] = �\0�;

}
return ercode;

}

// continued....

Dynamic C 5.x9-6 s Master-Slave Networking

// SLAVE.C (running in slave controller)
// The slave waits for a message from the master.
// Slave prints the master�s message to STDIO and also
// replies to the master.

char rbuf[255]; // receive buffer
char query[40]; // query buffer
char reply[40]; // reply buffer

main(){
int j;
VdInit();

// initialize for 19200 baud, receive buffer,slave1
op_init_z1(16, rbuf, 1);
j = 1;
while(1){

runwatch();
if(masterquery(query)){
// check for master query

sprintf(reply,�%s, Slave Reply %d�, query, j++);
// sends back reply to the master

replyOpto22(reply, strlen(reply), 0);
}

}
}

// check for master query
// copy message from the master to query if it�s valid
int masterquery(char *query){

int i;
if(check_opto_command() != 1) return 0;
for(i = 0; i< rbuf[1] - 2; i++){

query[i] = rbuf[2 + i];
}
query[i] = �\0�; // put an end-of-string
return 1;

}

Note that sendOp22 just sets up the message for transfer using the ninth-
bit protocol. It does not poll for the completion of the transfer. All
transfers of messages are done in the background interrupt routine.

Application Frameworks Master-Slave Networking s 9-7

Libraries and Sample Programs

Libraries

Table 9-1 lists the Dynamic C libraries that support master-slave communi-
cation.

Table 9-1. Dynamic C Libraries That Support
Master-Slave Communication

NETWORK.LIB Half-duplex RS-485 communication drivers.

MODEM232.LIB Accessory library used by preceding libraries.

Sample Programs

Table 9-2 lists the sample programs that illustrate master-slave communi-
cation.

Table 9-2. Dynamic C Sample Programs for
Master-Slave Communication

RS485.C Simple slave RS-485 program. Talks back to master
board running RS232.C.

SREMOTE.C Diagnostic port via the RS-485 linkage. The master
has to be running one of the following programs:
Z0REM.C, UARTREM.C, CZ0REM.C,
CUARTREM.C, S0REM.C , COM1REM.C or
COM2REM.C.

CSREMOTE.C Same as SREMOTE.C but will only run on the
PK2100 or the PK2200.

Dynamic C 5.x9-8 s Master-Slave Networking

Application Frameworks Execution Speed s A-1

APPENDIX A: EXECUTION SPEED

Dynamic C 5.xA-2 s Execution Speed

Table A-1 lists the execution times of various arithmentic operations.
Z-World controllers have clocks frequencies ranging from 6.144 to
18.432 MHz.

Table A-1. Execution Times of Arithmetic Operations
(µs)

Clock Frequency (MHz)
Operation

6.144 9.216 12.288 18.432

16-bit integer add 2.7 1.8 1.4 0.9

16-bit integer multiply 24 16 12 8

16-bit integer divide 142.5 95 72 47.5

Long (32-bit) integer add 21 14 10.5 7

Long integer multiply 123 82 60.5 41

Long integer divide 609 406 304.5 203

Floating-point (32-bit) add or subtract 117 78 19.5 39

Floating-point multiply 171 114 85.5 57

Floating-point divide 429 286 214.5 143

Sine or cosine 4650 3100 2325 1550

Square root 1275 850 637.5 425

Table A-2 lists the execution times of various logical and counting opera-
tions for a 9.216-MHz clock.

Table A-2. Execution Times of Logical Operations

Operation Execution Time

if(k) 2.6 µs

for(k=0;k<100;k++){}

for loop overhead
12.8 µs

sub(n);

subroutine call overhead with 1-integer argument
5.8 µs

switch(n){...} first case 22 µs

each additional case 7 µs

costate{}

costatement entry + exit overhead
32 µs

costate{waitfor(0)}

costatement waiting
19 µs

Application Frameworks Execution Speed s A-3

Table A-3 lists the execution times of other operations. These times are
approximate times, assuming a typical environment. Hand coding in
assembly language or other special care can result in substantially in-
creased performance.

Table A-3. Execution Times of Other Operations

Operation Execution Time

Guaranteed response to an interrupt
or interrupt latency

100 µs

Sustained data throughput, interrupt driven20K bytes per second

Burst data I/O using DMA 500K bytes per second

Dynamic C 5.xA-4 s Execution Speed

Application Frameworks Old 5-Key System s B-1

APPENDIX B: OLD 5-KEY SYSTEM

Dynamic C 5.xB-2 s Old 5-Key System

The old five-key system is a set of functions (5KEY.LIB and
5KEYEXTD.LIB) that has the all of the functionality of the newer FK.LIB,
and a few additional features. But the old five-key system is more com-
plex and somewhat harder to use, and the old five-key system runs only
with the full real-time kernel (RTK), not the simplified real-time kernel
(SRTK).

With the old 5-key system, the ADD and DELETE keys can be used for an
�extended� five-key system where menu items can be added or deleted
while a program is running. The old 5-key system also supports up to four
alarm functions.

The old 5-key menu server operates as a task running under the real-time
kernel. The menu server can either be �code-driven� or �linked-list
driven.� The code-driven technique is more flexible, but the linked-list
method is easier to use.

Code-Driven Approach
In the code-driven approach, the programmer creates menus for updating
parameters. A real-time-kernel task �calls� all the menus repeatedly. Each
menu handles its own list of items.

The following examples shows a conceptual code-driven menu system.

main(){
initialization
background();

}

indirect background(){
request(TASK1);
while(1);

}

indirect task1(){ // the code-driven menu
server
while(1){

menu1();
optional menu 1 housekeeping
menu2();
...
menuN();

}
}

// continued

Application Frameworks Old 5-Key System s B-3

int menu1(){
int k;
while(1){

k = _5key_parameter1();
optional housekeeping for parameter 1
if(k == MENU) return; // menu key pressed?

k = _5key_parameter2();
optional housekeeping for parameter 2
if(k == MENU) return; // menu key pressed?

k = _5key_parameter3()
optional housekeeping for parameter 3
if(k == MENU) return; // menu key pressed?

}
}
int menu2(){

code here
}
int menuN(){

code here
}

Linked-List Approach
The following code shows the linked-list approach. The library function
_5key_menu is called from a real-time-kernel task. This function uses the
linked lists that were created during initialization with calls to
_5key_setmenu. The linked-list method handles parameters easily, but
there is no way to do �housekeeping� for specific parameters or menus.

main(){
// initialization routines...

_5key_setmenu(menu1, parameter1);
_5key_setmenu(menu1, parameter2);
_5key_setmenu(menu1, parameter3);
_5key_setmenu(menu2, parameter4);
_5key_setmenu(menu2, parameter5);
_5key_setmenu(menu2, parameter6);
_5key_setmenu(menu3, parameter7);
_5key_setmenu(menu3, parameter8);
_5key_setmenu(menu3, parameter9);
background();

}
indirect background(){

request(TASK1);
while(1);

}
indirect task1(){

_5key_menu(); // endless 5key service
}

Refer to the Dynamic C Function Reference manual for
more information on function use..$

Dynamic C 5.xB-4 s Old 5-Key System

Updating and Monitoring Parameters
The old five-key system supports float values, integer values, Bool-
ean values, and time and date character strings. Parameters can be
modified or monitored under the five-key system. When data are moni-
tored, they are presumed to be modified somewhere else in the program.
Their values are displayed when changed.

Each data type is serviced with a different function call, but the functions
are similar to one another. In the following example, let the float
parameter Tb (boiler temperature) be used for setting the temperature of a
steam boiler.

These declarations apply.

#define MODIFY 1
#define NOT_MODIFY 0
#define DISPLAY 1
#define NO_DISPLAY 0
#define RTCLK 0x10
#define NO_RTCLK 0x00
#define NO_HELP (char**)0;
#define NO_FUNCTION (int(*)())0
float Tb;
char *Tb_help[] = { �Tb is the temperature�,

 �of boiler 3. Use UP, �,
 �DOWN and FIELD keys�,
 �to modify�};

Code-Driven Approach

The function call to change the variable Tb would be

_5key_float(�Tb�, &Tb, 300.00, 100.00,
 Tb_help, sizeof(Tb_help),
 MODIFY, 10);

or if the variable is simply monitored,

_5key_float(�Tb�, &Tb, 300.00, 100.00,
 Tb_help, sizeof(Tb_help),
 NOT_MODIFY, 10);

The following declarations are needed for a string time that displays and
allows changes to the real-time clock.

char time[9];
char *time_help[] = { �time display and set�,

 �the real-time clock � };

The function call would be the following.

_5key_time(�time�, time,
 time_help, sizeof(time_help),
 1, MODIFY, 10);

Application Frameworks Old 5-Key System s B-5

Linked-List Approach

The two variables previously mentioned, Tb and time, would be added to
the linked list with the following calls.

_5key_setmenu(�Menu1�, �Tb �, _5key_Fdata, &Tb,
 300.00, 100.00,
 Tb_help, sizeof(Tb_help),
 RTCLK|MODIFY, 10, NO_DISPLAY);

_5key_setmenu(�Menu1�, �time�, _5key_Tdata, time,
 0.0, 0.0,
 time_help, sizeof(time_help),
 RTCLK|MODIFY, 10, NO_DISPLAY);

Monitoring Function Keys
The five-key system monitors the function keys F1, F2, F3 and F4.
Programmers may write functions that correspond to each function key.
Load function key handlers using the procedure _5key_setfunc. For
example, with the call

_5key_setfunc(test1, test2, NO_FUNCTION, test1);

function test1 is executed whenever F1 or F4 is pressed. Function
test2 is executed whenever F2 is pressed. Pressing F3 will not cause
anything to happen. Function-key service routines can control the display
and the keypad.

Monitoring Help Keys
An item-specific help message can be displayed when the HELP key is
pressed. If no help message is needed, a call like the following will disable
help messages.

_5key_float(�Tb �, &Tb, 300.00, 100.00,
 NO_HELP,0, MODIFY, 10);

Periodic Display
When there is no keypad and no display activity for 1000 ticks
(25 seconds), the five-key system will display the time, date, up to 10
messages and up to 10 linked-list parameters. The time and date are
always enabled. String messages can be set up with the following call.

_5key_setmsg(message_no, �the message�);

The message_no can be from 0 to 9. The message corresponding to the
message_no can be changed at any time. Passing NULL instead of a
message will turn off that particular message.

Dynamic C 5.xB-6 s Old 5-Key System

Linked-list parameters can also be displayed. They are set through the
_5key_setmenu calls. The previously mentioned boiler temperature, Tb,
can be displayed periodically with this call.

_5key_setmenu(�Menu1�, �Tb �, _5key_Fdata, &Tb,
 300.00, 100.00,
 Tb_help, sizeof(Tb_help),
 MODIFY, 10, DISPLAY);

If the menu setup is code-driven, it is still possible to use the five-key
linked list, but _5key_menu cannot be called.

Software Alarms
Four variables, _ALARM1, _ALARM2, _ALARM3, and _ALARM4, are moni-
tored by the five-key system. When any of these software alarms becomes
nonzero, the five-key system resets it to zero, and calls a specified func-
tion. It handles the functions keys the same way, and except for alarms, the
triggers are generated in software. The alarm service is particularly useful
when an alarm condition has to transfer control of the display and keypad
to a predefined function. Alarm handlers might be loaded as follows.

_5key_setalarm(alarm1,alarm2,alarm3,NO_FUNCTION);

Here, function alarm1 is executed whenever Alarm 1 signals. Alarms 2
and 3 each have handlers. However, Alarm 4 has no function. Nothing
will happen when Alarm 4 signals.

5-Key Support Functions
The functions listed here may be used to develop a menu system specific to
an application.

These functions are described in the Dynamic C Function
Reference manual.$

Some of the functions (for example, _5key_float) return an integer
representing one of the keys MENU, ITEM, UP, DOWN, ADD or DE-
LETE. These integers are also defined as symbolic constants in
5KEY.LIB. These functions return such a value to indicate that the
particular key has been pressed. They return �1 when no key has been
pressed or the value is being monitored.

When data are monitored, they are presumed to be changed somewhere
else in the program. The PK2100 display reflects the change when
monitored data changes.

The following list groups the five-key functions.

Application Frameworks Old 5-Key System s B-7

Initialization Functions

_5key_setmenu
_5key_setalarm
_5key_setfunc
_5key_setmsg

Five-Key Service Functions

_5key_float
_5key_integer
_5key_boolean
_5key_time
_5key_date
_5key_menu
_5key_boolean()

Extended Five-Key Service Functions

_5key_12out
_5key_uinput
_5key_diginput
_5key_dacout()

Miscellaneous Functions

lcd_server
_5keysettime
_5keysetdate
_5keygettime
_5keygetdate
_5key_init_menu

Dynamic C 5.xB-8 s Old 5-Key System

Application Frameworks Z-World Products s C-1

APPENDIX C: Z-WORLD PRODUCTS

Dynamic C 5.xC-2 s Z-World Products

Name Description

PK2300 9.216-MHz packaged controller. Provides 19 digital I/O lines
(11 lines are configurable), 2 serial channels, a resistance
measurement input, and real-time clock. ABS enclosure.

PK2310 PK2300, without RTC and resistance measurement circuit.

PK2200 18.432-MHz packaged controller. Provides 16 digital inputs,
14 high-current outputs, 2 serial channels, and enclosure with
2x20 LCD and 2x6 keypad.

PK2210 PK2200, with 9.216-MHz clock.

PK2220 PK2200 without enclosure, LCD or keypad.

PK2230 PK2200 with a 9.216-MHz clock. No enclosure, LCD or
keypad.

PK2240 PK2200 with a 128 x 64 EL backlit graphic LCD and 3 x 4
keypad.

PK2100 6.144-MHz packaged controller. Provides 7 digital inputs,
10 high-current outputs, 6 universal inputs, 2 SPST relays, 2
serial channels, one high-gain analog input, 2 analog outputs,
and a rugged enclosure with 2x20 LCD and 2x6 keypad.
Operates at 24 volts. D.C.

PK2110 PK2100 that operates at 12 V D.C.

PK2120 PK2100 without enclosure, LCD or keypad.

PK2130 PK2120 that operates at 12 V D.C.

BL1600 9.216-MHz board-level controller. Provides 12 digital
inputs, 14 digital outputs, 2 serial channels, EEPROM and
real-time clock

BL1610 BL1600 without serial channels, high-current drivers,
EEPROM, or real-time clock.

BL1500 9.216-MHz board-level controller. Provides 24 PIO lines,
four 12-bit ADC channels, one RS232 channel, one RS485
channel, and real-time clock. 128K SRAM.

BL1510 BL1500 with 32K SRAM. No real-time clock. Provides 2
additional PIO lines.

BL1520 BL1500 with 32K SRAM. No real-time clock or 12-bit A/D
converter. Provides 2 additional PIO lines.

BL1400 6.144-MHz board-level controller. Provides 12 PIO lines,
one RS-232 channel, one RS-485 channel and real-time clock.

BL1410 BL1400 without the RS-485 channel and real-time clock.
Provides 2 additional PIO lines.

Application Frameworks Z-World Products s C-3

Name Description

BL1300 9.216-MHz board-level controller. Provides 4 serial channels
and two 16-bit parallel ports. Optional enclosure.

BL1200 9.216-MHz board-level controller. Provides 8 optically
isolated inputs, 6 high-current outputs, and 2 RS-485
channels.

BL1100 9.216-MHz board-level controller. Provides 16 digital I/O
lines, 8 high-current drivers, 7 10-bit ADC inputs, 2 RS-232
channels and 2 RS-485 channels. Switching power supply.

BL1110 BL1100 with a linear (not switching) power supply.

BL1120 BL1100 with a 12.288-MHz clock and linear (not switching)
power supply. Runs 50% faster.

CM7100 18.432-MHz microprocessor core module. Provides
processor, 384 device addresses, 128K SRAM, EEPROM, real-
time clock, and 691 supervisor.

CM7110 CM7100 with 9.216-MHz clock.

CM7120 CM7100 with 9.216-MHz clock and 32K SRAM.

CM7130 CM7100 with 9.216-MHz clock and 32K SRAM. Without 691
supervisor, real-time clock, and EEPROM.

CM7200 18.432-MHz microprocessor core module. Provides
processor, 384 device addresses, 128K SRAM, real-time
clock, 691 supervisor, and 128K flash EPROM.

CM7210 CM7200 with 9.216-MHz clock.

CM7220 CM7200 with 9.216-MHz clock and 32K SRAM.

CM7230 CM7200 with 9.216-MHz clock and 32K SRAM. Without 691
supervisor or real-time clock.

Other products include the BL1000, LP3100 and the PK2400.

Dynamic C 5.xC-4 s Z-World Products

Application Frameworks Index s 1

INDEX

Symbols

#define 4-3, 5-3
#INT_VEC 8-5, 8-10
_5key_float B-5, B-6
_5key_menu B-3, B-6
_5key_setalarm B-6
_5key_setfunc B-5
_5key_setmenu B-3, B-6
_5key_setmsg B-5
_ALARM1 ... _ALARM4 B-6
_GLOBAL_INIT 3-5, 3-7, 4-4
_prot_init 6-5
_prot_recover 6-4, 6-5
5KEY.LIB B-2, B-6
5KEYEXTD.LIB B-2

A

abort 3-4, 3-5, 3-8, 3-10,
3-15, 3-16

ADD key 7-2, 7-3
alarm functions B-2
always_on 3-6, 3-7, 3-16
assembly language 2-3

B

background task
SRTK 5-2

battery-backed RAM 6-4
baud rate 2, 8-5, 9-3
BINARY mode 8-3
BIOS 6-3
buffer

receive 8-6, 8-7, 9-3, 9-4
initialization 8-5
reading 8-6

transmit 8-7, 9-4
initialization 8-5
writing 8-6, 8-7

C

CCVer 6-4, 6-5
chains. See function chains
check sum 9-2, 9-3, 9-4

computing 8-11
check_opto_command 9-3
checking for modem commands

8-10
ChkSum 3-7
ChkSum2 3-8
CoBegin 3-6, 3-7, 3-10
CoData 3-5, 3-8, 3-9, 3-10, 3-11

description 3-6, 3-7
initialization 3-5

COM ports
ISA 8-4

COMMAND mode 8-3
command protocol

master-slave 9-2
communication

RS-232 8-2, 8-5, 8-6, 8-7
RS-485 9-2, 9-3, 9-4, 9-7
serial 8-2, 8-5, 9-2, 9-3,

9-4, 9-7
master-slave 9-3, 9-4

comp48 5-6
compile-time interrupt directive

8-10
connections

RS-485 two-wire network 9-2
content 3-8
controller execution speed

arithmetic A-2
logical decision making A-2

cooperative multitasking 2-4, 2-5
CoPause 3-11
CoReset 3-6, 3-7, 3-10,

3-15, 3-16
CoResume 3-11
costate 3-5, 3-11, 3-13,

3-14, 3-15, 3-16

Dynamic C 5.x2 s Index

costatements 2-4, 3-1, 3-2, 3-4,
3-6, 5-2

abort 3-10
always_on 3-6
delay functions 3-10
dependencies 3-13
error exit 3-15
firsttime flag and functions

3-8, 3-9
granularity 3-11, 3-12
init_on 3-6
named 3-5
nested 3-14
problems with C expression

evaluation 3-17
syntax 3-5
timing considerations 3-11,

3-12
unnamed 3-5
waitfor 3-9, 3-12, 3-16, 3-17
yield 3-10

CRC (cyclic redundancy check)
9-2, 9-3, 9-4

computing 8-11
CSIO 8-11
CSState 3-6, 3-7
CTS 8-5, 8-6
CTS/RTS 8-3
cyclic redundancy check 9-2,

9-3, 9-4
computing 8-11

D

DATA mode 8-3
Ddelay_100ms 8-10
deciphering modem commands

8-9
DEL key 7-3
delay

modem communications 8-10
delay functions 3-10
delay_1sec 8-10
DelayMs 3-8, 3-17, 4-2, 5-3
DelaySec 3-8, 4-2, 5-3

DelayTicks 3-8, 4-2, 4-3, 5-3
DELETE key 7-2
DEMO_RT.C 5-9
Dget_modem_command 8-9
Dinit_com2 8-4
Dinit_sca 8-8
Dinit_scb 8-4
Dinit_uart 8-4
Dinit_z0 8-4
disabling interrupts 8-11

DMA channels 8-11
Z180 Serial Channels 0 and 1

8-11
disabling the RS-485 driver 9-4
Dkill_z0 8-7
DMA channels

disabling interrupts 8-11
DOWN key 7-2
downloading

data 8-8
programs 8-10

Dread_sca 8-8
Dread_z0 8-6
Dread_z01ch 8-6
Dreset_z0rbuf 8-7
Dreset_z0tbuf 8-7
Drestart_z0modem 8-10
Dscasend_prompt 8-8
Dwrite_sca 8-8
Dwrite_z0 8-7
Dwrite_z01ch 8-6
Dxmodem_z0down 8-8
Dxmodem_z0up 8-8
Dynamic C

Function Reference B-3
programming port 8-10

Dz0_circ_int 8-10
Dz0modem_chk 8-10
Dz0send_prompt 8-7

E

echo option 8-5
EEPROM 6-4, 8-10

Application Frameworks Index s 3

error exits 3-15
use of setjmp and longjmp

3-15
ERROR_EXIT 6-2
exception 6-2
execution speed

other operations A-3
expression evaluation

and costatements 3-17

F

F1, F2, F3, F4 7-2, 7-3
failure detection and recovery 6-5

hardware failures 6-2
hardware watchdog 6-3
power failure 6-2
protected variables 6-4
reset 6-3
software failures 6-2
super reset 6-3

fastcall 2-5, 4-2, 4-3, 5-2
FIELD key 7-2
firsttime 3-8

flag 3-8, 3-9
functions 3-8, 3-9

calling 3-9
definition of 3-9

Five-Key system 7-1, 7-2, 8-1,
9-1

DOWN key 7-2
extending 7-3
FIELD key 7-2
HELP key 7-2, 7-3
ITEM key 7-2
linked-list driven B-5
MENU key 7-2
operation 7-2
UP key 7-2

FK.LIB B-2
fk_helpmsg 7-5
fk_item_alpha 7-6
fk_item_enum 7-7
fk_item_int 7-6
fk_item_setdate 7-6

fk_item_settime 7-6
fk_item_uint 7-6
fk_monitorkeypad 7-3, 7-5
FKSAMP.C 7-5
flash EPROM 6-4

G

getcrc 8-11
gettimer 5-6
global initialization 4-4

initializing CoData 3-5
granularity 4-3

costatement 3-11, 3-12

H

hardware watchdog 6-3
Hayes Smart Modem 8-3, 8-8,

8-9
HELP key 7-2, 7-3, B-5

I

identifying shared variables 2-6
init_kernel 5-6
init_on 3-6
init_srtkernel 5-2
initialization

receive buffer 8-5
transmit buffer 8-5
Z180 Port 1 9-3

initiation
serial transmission 8-6, 8-7, 9-4

input
RS-232 8-6

INT1 8-11
INT2 8-11
interrupt-driven transmission 9-4
interrupts 2-2, 2-6
#INT_VEC 8-5
disabling 8-11
latency 2-3

causes 2-2
nested 2-3
routines 2-3

Dynamic C 5.x4 s Index

interrupts
SER0_VEC 8-5
serial 8-5
service functions 8-10
service routines 8-10, 9-5
vector table 8-10

ISA
COM ports 8-4

isCoDone 3-11
isCoRunning 3-11
ITEM key 7-2
IX register 5-7

K

kernel
real-time 2-5, 4-3, 5-2, 5-3,

5-8, 8-8, 8-10, 9-4, B-2
keyboard

see Five-Key system 7-1,
7-2, 8-1, 9-1

L

lastlocADDR 3-7, 3-8
lastlocCBR 3-7, 3-8
latency 2-2
LCD

see Five-Key system 7-1,
7-2, 8-1, 9-1

longjmp 3-15

M

master message format 9-2, 9-3
master-slave

command protocol 9-2
networking 9-5, 9-7
serial communication 9-3, 9-4
software support 9-3

memory
extended

uploaded data 8-8
random access 6-4

MENU key 7-2
misticware 9-4

modem commands 8-9
deciphering 8-9

modem communication 8-5
checking for commands 8-10
delay 8-10
restarting 8-10

multitasking 2-4, 5-4
cooperative 2-4, 2-5
preemptive 2-4, 2-5, 2-6
priority levels 2-6
shared variables 2-5, 2-6

N

N_WATCHDOG 4-3, 4-4
nested costatements 3-14

example 3-15
network connections

two-wire RS-485 9-2
ninth-bit address protocol 9-2
ninth-bit binary communication

9-3, 9-4
NMI (nonmaskable interrupt) 6-2
NO_CARRIER 8-3
nodebug 5-8
nonmaskable interrupt (NMI) 6-2
NTASKS 4-3, 5-4
number of bits 8-5

O

old Five-Key system B-6
alarm functions B-6
changing parameters B-4
code-driven B-2, B-4
data types B-4
function keys B-5
HELP key B-5
linked-list-driven B-3
monitoring data B-5
monitoring parameters B-4
string messages B-5
time

and date B-5
op_init_z1 9-3

Application Frameworks Index s 5

op_kill_z1 9-4
op_rec_z1 9-4
op_send_z1 9-4
opto-22 binary protocol 9-2,

9-3, 9-4, 9-5
optodelay 9-4
output

RS-232 8-6, 8-7
RS-485 9-2, 9-3

P

parity 8-5
phy_adr 8-9
preemption 2-4, 2-5, 2-6

with fastcall 4-3
preemptive multitasking 2-4,

2-5, 2-6
printf 5-9
problems with C expression

evaluation 3-17
programmable reload timer (PRT)

5-3, 8-11
programming 7-2
protected variables 2-2, 2-3

crash recovery 6-4
protocol

command
master-slave 9-2

R

RAM
battery-backed 6-4

rbuf_there 9-4
read-only memory 8-10
real-time kernel (RTK) 2-5, 4-2,

4-3, 5-2, 5-3, 5-8, 8-8,
8-10, 9-4, B-2

and the old Five-Key system B-2
and virtual driver 5-3
array of RTK task pointers 5-3
sample programs 5-9

real-time programming 2-1

receive buffer 8-2, 8-6, 8-7,
9-3, 9-4

initialization 8-5
reading 8-6

reload_vec 8-10
replyOpto22 9-4
request 5-5, 5-6, B-2, B-3
reset 6-3
resetZ180int 8-11
restarting modem communication

8-10
restoreix 5-8
restrictions on use of suspend

5-7
rkernel 5-8, 5-9
ROM

programmable 8-10
RS-232 communication 8-2,

8-5, 8-6, 8-7
features 8-2

circular buffers 8-2
CTS/RTS control 8-3
modem communication 8-3
XMODEM file transfer 8-3

interrupt handling 8-5
serial inputs 8-6
serial outputs 8-6, 8-7
software support 8-4, 8-5

RS-485 communication 9-2,
9-3, 9-4, 9-7

disabling driver 9-4
drivers 8-11
serial outputs 9-2, 9-3
two-wire network connections

9-2
RTK (real-time kernel) 2-5,

4-3, 5-2, 5-3, 5-8, 8-8, B-2
RTK.LIB 5-4
RTS 8-5, 8-6
run_after 5-6
run_at 5-6
run_cancel 5-6
run_every 5-4, 5-5, 5-6, 5-7
run_timer 5-8

Dynamic C 5.x6 s Index

RUNKERNEL 4-3, 5-2, 5-3,
5-4, 8-10

runwatch 5-9

S

sample programs
communication 8-7
Five-Key system 7-5
master-slaves 9-5, 9-6, 9-7
real-time kernel (RTK) 5-9

saveix 5-8
SCC 8-2, 8-4, 8-8
sendOp22 9-3
SER0_VEC 8-5
serial communication 8-2, 8-5,

9-2, 9-3, 9-4, 9-7
master-slave 9-3, 9-4

serial transmission
initiating 8-6, 8-7
terminating 8-7

setjmp 3-15
shared variables 2-2, 2-3, 2-6

identifying 2-6
multitasking 2-5, 2-6

simplified real-time kernel (SRTK)
2-5, 4-3, 5-2, 5-3, 7-3, B-2

sample program 5-2
SIO 8-2, 8-4
slave response format 9-2, 9-4
Smart Modem

Hayes 8-3, 8-8
software support

RS-232 8-5
SRTK (simplified real-time kernel)

2-5
SRTK.LIB 5-2
srtk_hightask 5-2
srtk_lowtask 5-2
stack corruption checking 5-8
state machine 3-3

example 3-2
stop bits 8-5
string messages

in the Five-Key system B-5

super reset 6-3
suspend 2-5, 5-5, 5-7, 5-8,

5-9, 8-8, 8-10, 9-4
syntax

costatement 3-5

T

TASKSTORE_SIZE 5-7, 5-8
time and date

in the old Five-Key system B-5
timer

watchdog 4-4, 6-3
timers

PRT 8-11
transmission

initiating 8-6, 8-7, 9-4
interrupt-driven 9-4

transmit buffer 8-7, 9-4
initialization 8-5
writing 8-6, 8-7

two-wire connections
RS-485 network 9-2

U

UP key 7-2
uplc_init

initialize CoData structures 3-5
uploading data 8-8
useix 5-7

V

VD_FASTCALL 4-3
vd_initquickloop 4-3
vd_quick_loop 4-3
VdGetFreeWd 4-4
VdInit 4-2, 4-3, 4-4

and waitfor delay functions
3-10

initialize CoData structures 3-5
VdReleaseWd 4-4
VDRIVER.LIB 4-2
VdWdogHit 4-4

Application Frameworks Index s 7

virtual driver 4-1, 5-3, 6-3
and real-time kernel 4-3
fastcall 4-3
global initialization 4-4

virtual watchdog 4-2, 4-4, 6-3

W

waitfor 3-5, 3-8, 3-9, 3-12,
3-13, 3-14, 3-16, 3-17, 4-3

watchdog timer 4-4, 6-3

X

xdata 8-9
XMODEM

commands 8-8
protocol 8-2, 8-3, 8-8

XP8700 8-4

Y

yield 3-4, 3-5, 3-8, 3-10

Z

z0binaryreset 8-6
z0binaryset 8-6
z1_op_int 9-5
Z180 8-2, 8-4

Port 0 8-5, 8-6, 8-7, 8-10
Port 1 9-4, 9-5

initialization 9-3
Serial Channels 0 and 1

disabling interrupts 8-11

Dynamic C 5.x8 s Index

Part No. 019-0001-02
Revision 2

Printed in U.S.A.

Z-World
2900 Spafford Street

Davis, California 95616-6800 USA

Telephone:
Facsimile:

24-Hour FaxBack:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
(530) 753-0618
http://www.z world.com
zworld@zworld.com

